TAME SUBSETS OF SPHERES IN E^{3}

L. D. Loveland

Let F be a closed subset of a 2 -sphere S in E^{3}. We define F to be tame if F lies on some tame 2 -sphere in E^{3}. The sets F and S satisfy Property ($*, F, S$) provided Bing's Side Approximation Theorem can be applied in such a way that the approximating 2 -sphere S^{\prime} misses F (that is, $S \cap S^{\prime}$ lies in a finite collection of disjoint small disks in $S-F$). In this paper we show that Property ($*, F, S$) implies that F is tame by establishing a conjecture made by Gillman. Other properties which are equivalent to Property ($*, F, S$) are also given.

If $F_{1}, F_{2}, \cdots, F_{n}$ is a finite collection of closed subsets of S such that Property ($*, F_{i}, S$) holds for each i, then Property (*, $\sum F_{i}, S$) also holds. We use this result to show that if S is locally tame modulo $\sum F_{i}$, then S is tame.

Bing's Side Approximation Theorem [8, Theorem 16] can be stated as follows:

Theorem 0. If S is a 2-sphere in $E^{3}, \quad V$ is a component of $E^{3}-S$, and $\varepsilon>0$, then there is a polyhedral 2-sphere S^{\prime} containing a finite collection $D_{1}, D_{2}, \cdots, D_{n}$ of disjoint disks each of diameter less than ε, and there is a finite collection $E_{1}, E_{2}, \cdots, E_{r}$ of disjoint disks on S, each of diameter less than ε, such that

1. there is a homeomorphism of S onto S^{\prime} that moves no point as much as ε,
2. $S^{\prime}-\sum_{i=1}^{n} D_{i} \subset V$, and
3. $S \cap S^{\prime} \subset \sum_{i=1}^{r} E_{i}$.

If F is a closed subset of the 2 -sphere S and V is a component of $E^{3}-S$, we define Property ($*, F, V$) to mean that Theorem 0 can be applied relative to S and V with the additional requirement that
4. $\left(\sum E_{i}\right) \cap F=\varnothing$.

Property ($*, F, S$) is satisfied if Property ($*, F, V$) holds for each component V of $E^{3}-S$.

Gillman has already established that an arc A is tame if A lies on a 2 -sphere S and Property ($*, A, S$) is satisfied; however, he comments that the "natural approach" to the problem requires a certain conjecture which he states and does not prove [13, p. 467]. Theorem 3 establishes this conjecture, and Theorem 6 shows that an arbitrary closed set F on S is tame if Property ($*, F, S$) holds.

Hosay has announced two sufficient conditions for a closed subset

