FRACTIONAL POWERS OF OPERATORS, II INTERPOLATION SPACES

HIKOSABURO KOMATSU

This is a continuation of an earlier paper "Fractional Powers of Operators" published in this Journal concerning fractional powers A^{α} , $\alpha \in C$, of closed linear operators A in Banach spaces X such that the resolvent $(\lambda + A)^{-1}$ exists for all $\lambda > 0$ and $\lambda(\lambda + A)^{-1}$ is uniformly bounded. Various integral representations of fractional powers and relationship between fractional powers and interpolation spaces, due to Lions and others, of X and domain $D(A^{\alpha})$ are investigated.

In §1 we define the space $D_p^{\sigma}(A)$, $0 < \sigma < \infty$, $1 \leq p \leq \infty$ or $p = \infty$, as the set of all $x \in X$ such that

$$\lambda^{\sigma}(A(\lambda + A)^{-1})^m x \in L^p(X)$$
 ,

where *m* is an integer greater than σ and $L^{p}(X)$ is the L^{p} space of *X*-valued functions with respect to the measure $d\lambda/\lambda$ over $(0, \infty)$.

In §2 we give a new definition of fractional power A^{α} for Re $\alpha > 0$ and prove the coincidence with the definition given in [2]. Convexity of $||A^{\alpha}x||$ is shown to be an immediate consequence of the definition. The main result of the section is Theorem 2.6 which says that if $0 < \operatorname{Re} \alpha < \sigma, x \in D_p^{\sigma}$ is equivalent to $A^{\alpha}x \in D_p^{\sigma-\operatorname{Re}\alpha}$. In particular, we have $D_1^{\operatorname{Re}\alpha} \subset D(A^{\alpha}) \subset D_{\infty}^{\operatorname{Re}\alpha}$. For the application of fractional powers it is important to know whether the domain $D(A^{\alpha})$ coincides with $D_p^{\operatorname{Re}\alpha}$ for some p. We see, as a consequence of Theorem 2.6, that if we have $D(A^{\alpha}) = D_p^{\operatorname{Re}\alpha}$ for an α , it holds for all Re $\alpha > 0$. An example and a counterexample are given. At the end of the section we prove an integral representation of fractional powers.

Section 3 is devoted to the proof of the coincidence of D_p^{σ} with the interpolation space $S(p, \sigma/m, X; p, \sigma/m - 1, D(A^m))$ due to Lions-Peetre [4]. We also give a direct proof of the fact that $D_p^{\sigma}(A^{\alpha}) = D_p^{\alpha\sigma}(A)$.

In §4 we discuss the case in which -A is the infinitesimal generator of a bounded strongly continuous semi-group T_t . A new space $C_{p,m}^{\sigma}$ is introduced in terms of $T_t x$ and its coincidence with D_p^{σ} is shown. Since $C_{\infty,m}^{\sigma}, \sigma \neq$ integer, coincides with C^{σ} of [2], this solves a question of [2] whether $C^{\sigma} = D^{\sigma}$ or not affirmatively. The coincidence of $C_{p,m}^{\sigma}$ with $S(p, \sigma/m, X; p, \sigma/m - 1, D(A^m))$ has been shown by Lions-Peetre [4]. Further, another integral representation of fractional powers is obtained.