A NOTE OF DILATIONS IN L^p

S. R. HARASYMIV

The objects of study in this note are the Lebesgue spaces $L^{p}(1 on the$ *n* $-dimensional Euclidean space <math>R^{n}$. We consider a function f in one of the above-mentioned spaces, and derive results about the closure (in the relevant function space) of the set of linear combinations of functions of the form

$$f(a_1x_1 + b_1, \cdots, a_nx_n + b_n)$$

where $a_1, \cdots, a_n, b_1, \cdots, b_n \in R$, and $a_1 \neq 0, \cdots, a_n \neq 0$.

1. Notation and main results. The Haar measure on \mathbb{R}^n will be denoted by dx. It will be assumed normalized so that the Fourier inversion formula holds without any multiplicative constants outside the integrals involved.

If $x \in \mathbb{R}^n$, and k is an integer such that $1 \leq k \leq n$, then x_k will denote the k-th component of x. Multiplication (and of course addition) in \mathbb{R}^n is defined component-wise, in the usual manner.

We write $R^* = R^n \setminus \{x: x_k = 0 \text{ for some } k\}$.

Suppose that 1 . Then <math>q will always be written for the number satisfying

$$\frac{1}{p}+\frac{1}{q}=1.$$

For each integer k such that $1 \leq k \leq n$, J_k will denote the projection of \mathbb{R}^n onto its k-th factor; *i.e.*

$$J_k(x) = x_k$$
 for all $x \in R^n$.

If f is any function on \mathbb{R}^n , and $a \in \mathbb{R}^*$, $b \in \mathbb{R}^n$, then f_b^a will denote the function defined by

$$f_b^a(x) = f(ax + b)$$
 for all $x \in R^n$.

(The map $x \rightarrow ax + b$ is called a dilation of R^n .) Finally, the set S_f is defined by

$$S_f = \{f_b^a: a \in R^*, b \in R^n\}$$
.

In what follows, several vector spaces will be considered. If $1 , <math>L^{p}(\mathbb{R}^{n})$ will denote the usual Lebesgue space. $L^{p}(\mathbb{R}^{n})$ will be given the usual norm topology.

If f is an element of $L^{p}(\mathbb{R}^{n})$ we shall denote by T[f] the closed vector subspace of $L^{p}(\mathbb{R}^{n})$ generated by S_{f} .