ON THE WEAK LAW OF LARGE NUMBERS AND THE GENERALIZED ELEMENTARY RENEWAL THEOREM

WALTER L. SMITH

 $\{X_n\}$ is a sequence of independent, nonnegative, random variables and $G_n(x) = P\{X_1 + \cdots + X_n \leq x\}$. $\{a_n\}$ is a sequence of nonnegative constants such that, for some $\alpha > 0, \gamma > 0$, and function of slow growth L(x).

$$\sum\limits_{1}^{N}a_{r} \sim rac{lpha N^{\gamma}L(N)}{\Gamma(1+\gamma)}$$
, as $N
ightarrow \infty$.

A Generalized Elementary Renewal Theorem (GERT) gives conditions such that, for some $\mu > 0$,

(*)
$$\Psi(x) = \Sigma a_r G_r(x) \sim \frac{\alpha L(x)}{\Gamma(1+\gamma)} \left(\frac{x}{\mu}\right)^{\gamma}$$
, as $x \to \infty$

The Weak Low of Large Numbers (WLLN) states that $(X_1 + \cdots + X_n)/n \to \mu$, as $n \to \infty$, in probability. Theorem 1 proves that WLLN implies (*). Theorem 3 proves that (*) implies WLLN if, additionally, it is given that

(i) $\sum_{1}^{n} P\{X_j > n\varepsilon\} \to 0 \text{ as } n \to \infty$, for every small $\varepsilon > 0$; (ii) for some $\varepsilon > 0$, $n^{-1} \sum_{1}^{n} \int_{0}^{n\varepsilon} P\{X_j > x\} dx$ is a bounded function of n. Theorem 2 supposes the $\{X_n\}$ to have finite

expectations and proves (*) implies WLLN if it is given that

$$\limsup_{n\to\infty}\frac{\mathscr{C}X_1+\mathscr{C}X_2+\cdots+\mathscr{C}X_n}{n}\leq\mu,$$

in which case $(\mathscr{C} X_1 + \cdots + \mathscr{C} X_n)/n$ necessarily tends to μ as $n \rightarrow \infty$. Finally, an example shows that (*) can hold while the WLLN fails to hold. Much use is made of the fact that a necessary and sufficient condition for the WLLN is that, for all small $\varepsilon > 0$,

$$rac{1}{n}\int_{0}^{narepsilon}\sum_{1}^{n}P\{X_{j}>x\}dx
ightarrow\mu$$
, as $n
ightarrow\infty$.

Let $\{X_n\}, n = 1, 2, \dots$, be a sequence of independent, nonnegative, random variables; write $F_n(x) \equiv P\{X_n \leq x\}$; $S_n = X_1 + X_2 + \cdots + X_n$; $G_n(x) = P\{S_n \leq x\}$; when the first moments exist, write $\mu_n = \mathscr{C} X_n$. Let $\{a_n\}$ be a sequence of nonnegative constants such that, for some constants $\alpha > 0$, $\gamma > 0$, and some function of slow growth L(x),

(1.1)
$$\sum_{n=1}^{N} a_n \sim \frac{\alpha N^r L(N)}{\Gamma(1+\gamma)}, \text{ as } N \to \infty .^1$$

¹ We carry the factor $\Gamma(1+\gamma)$ to simplify comparisons with Smith (1964).