ON THE WEAK LAW OF LARGE NUMBERS AND THE GENERALIZED ELEMENTARY RENEWAL THEOREM

Walter L. Smith

$\left\{X_{n}\right\}$ is a sequence of independent, nonnegative, random variables and $G_{n}(x)=P\left\{X_{1}+\cdots+X_{n} \leqq x\right\} .\left\{a_{n}\right\}$ is a sequence of nonnegative constants such that, for some $\alpha>0, \gamma>0$, and function of slow growth $L(x)$,

$$
\sum_{1}^{N} a_{r} \sim \frac{\alpha N^{\gamma} L(N)}{\Gamma(1+\gamma)}, \quad \text { as } N \rightarrow \infty
$$

A Generalized Elementary Renewal Theorem (GERT) gives conditions such that, for some $\mu>0$,
(*) $\quad \Psi(x)=\Sigma a_{r} G_{r}(x) \sim \frac{\alpha L(x)}{\Gamma(1+\gamma)}\left(\frac{x}{\mu}\right)^{\gamma}, \quad$ as $x \rightarrow \infty$.
The Weak Low of Large Numbers (WLLN) states that $\left(X_{1}+\cdots+X_{n}\right) / n \rightarrow \mu$, as $n \rightarrow \infty$, in probability. Theorem 1 proves that WLLN implies (*). Theorem 3 proves that (*) implies WLLN if, additionally, it is given that
(i) $\sum_{1}^{n} P\left\{X_{j}>n \varepsilon\right\} \rightarrow 0$ as $n \rightarrow \infty$, for every small $\varepsilon>0$;
(ii) for some $\varepsilon>0, n^{-1} \sum_{1}^{n} \int_{0}^{n \varepsilon} P\left\{X_{j}>x\right\} d x$ is a bounded function of n. Theorem 2 supposes the $\left\{X_{n}\right\}$ to have finite expectations and proves $\left({ }^{*}\right)$ implies WLLN if it is given that

$$
\limsup _{n \rightarrow \infty} \frac{\mathscr{E} X_{1}+\mathscr{E} X_{2}+\cdots+\mathscr{E} X_{n}}{n} \leqq \mu,
$$

in which case $\left(\mathscr{E} X_{1}+\cdots+\mathscr{E} X_{n}\right) / n$ necessarily tends to μ as $n \rightarrow \infty$. Finally, an example shows that $\left({ }^{*}\right)$ can hold while the WLLN fails to hold. Much use is made of the fact that a necessary and sufficient condition for the WLLN is that, for all small $\varepsilon>0$,

$$
\frac{1}{n} \int_{0}^{n \varepsilon} \sum_{1}^{n} P\left\{X_{j}>x\right\} d x \rightarrow \mu, \text { as } n \rightarrow \infty .
$$

Let $\left\{X_{n}\right\}, n=1,2, \cdots$, be a sequence of independent, nonnegative, random variables; write $F_{n}(x) \equiv P\left\{X_{n} \leqq x\right\} ; S_{n}=X_{1}+X_{2}+\cdots+X_{n}$; $G_{n}(x)=P\left\{S_{n} \leqq x\right\}$; when the first moments exist, write $\mu_{n}=\mathscr{E} X_{n}$. Let $\left\{a_{n}\right\}$ be a sequence of nonnegative constants such that, for some constants $\alpha>0, \gamma>0$, and some function of slow growth $L(x)$,

$$
\begin{equation*}
\sum_{n=1}^{N} a_{n} \sim \frac{\alpha N^{\gamma} L(N)}{\Gamma(1+\gamma)}, \text { as } N \rightarrow \infty .^{1} \tag{1.1}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ We carry the factor $\Gamma(1+\gamma)$ to simplify comparisons with Smith (1964).

