THE EXTENSION OF BILINEAR FUNCTIONALS

T. L. HAYDEN

Using the relationship between bilinear functionals and linear operators we obtain some theorems on the extension of bilinear functionals. To extend bilinear functionals in Hilbert Spaces a special constructional process is given which is a generalization of the usual inner product. This allows the construction of bilinear functionals with special properties. In particular it allows a generalization of the Lax-Milgram Theorem. We also extend the Lax-Milgram Theorem to reflexive Banach Spaces.

In order to fix the terminology, let U and V be Banach Spaces (real or complex), then by a bilinear functional we mean a function F from $U \times V$ to the complex (or real) numbers such that F(u, v) is linear on U for each fixed $v \in V$ and vice versa. The norm of a bounded bilinear functional F, denoted by ||F||, is defined as:

$$||\,F\,||\,=\,\inf\,\{K>0\colon |\,F(u,\,v)\,|\,\leq\,K||\,u\,||||\,v\,||\;\; ext{for all }u\in U,\,v\in V\}\;.$$

Hence a bounded bilinear functional is jointly continuous on $U \times V$ in the product topology and we note that:

$$||F|| = \sup_{\substack{\|x\| \leq 1 \\ \|y\| \leq 1 \\ \|y\| \leq 1 }} |F(x, y)| = \sup_{\substack{\|x\| = 1 \\ \|y\| = 1 \end{pmatrix}} |F(x, y)| \leq \sup_{\substack{\|x\| = 1 \\ \|y\| = 1 \end{pmatrix}} |F(x, y)| \leq ||F||.$$

If S and T are subspaces of U and V respectively and B_0 is a bounded bilinear functional on $S \times T$, then we call B an extension of B_0 to $U \times V$ if B is a bounded bilinear functional on $U \times V$ such that $B_0(s, t) = B(s, t)$ on $S \times T$ and $||B_0|| = ||B||$. If such an extension exists we shall say that B_0 can be extended to $U \times V$. Furthermore, if each bounded bilinear functional on $S \times T$ can be extended to $U \times V$ we will say that S and T have the bilinear extension property.

2. Some extension theorems.

THEOREM 1. Suppose U, V, W are normed linear spaces and S and T are subsets of U and V respectively. A necessary and sufficient condition to extend a bounded bilinear operator B_0 from $S \times T$ into W to a bounded bilinear operator B from (Span S) × (Span T) into W is that there exists a constant c such that

$$\Big|\sum_{k,j}lpha_keta_jB_{\scriptscriptstyle 0}(x_k,y_j)\Big\|\leq c\Big\|\sum_klpha_kx_k\Big\|\Big\|\sum_jeta_jy_j\Big\|$$
 .