AN INTEGRAL INEQUALITY WITH APPLICATIONS TO THE DIRICHLET PROBLEM

James Calvert

Abstract

An existence theorem for the elliptic equation $\Delta u-q u=f$ can be based on minimization of the Dirichlet integral $D(u, u)=\int|\nabla u|^{2}+q|u|^{2} d x$. The usual assumption that $q(x) \geqq 0$ is relaxed in this paper.

Actually the paper deals directly with the general second order formally self-adjoint elliptic differential equation $\sum_{i, k} D_{\imath}\left(a_{i k} D_{k} u\right)+q u=f$ where $q(x)$ is positive and "not too large" in a sense which will be made precise later. The technique consists in showing that the quadratic form whose Euler-Lagrange equation is the P.D.E. above is positive for a sufficiently large class of functions.

Earlier inequalities of Beesack [1] and Benson [2] show that there are positive functions $q(x)$ for which $\int|\nabla u|^{2}-q|u|^{2} d x \geqq 0$ for functions u which vanish on the boundary of the domain. D. C. Benson suggested to the author that this inequality might lead to existence theorems for $\Delta u+q u=f$.

Let $x=\left(x_{1}, x_{2}, \cdots x_{n}\right) \in R^{n}$. Let D be an open domain in R^{n} which may be unbounded unless the contrary is assumed. Let $C^{\infty}(D)$ denote the set of all infinitely differentiable complex-valued functions and $C_{0}^{\infty}(D)$ denote the subset of $C^{\infty}(D)$ of functions with compact support contained in D. Let $\|u\|_{i}^{2}=\int_{D} \sum_{i=1}^{n}\left|D_{i} u\right|^{2}+|u|^{2} d x$ and let $C^{\infty *}(D)$ be the subset of $C^{\infty}(D)$ of functions with $\|u\|_{1}<\infty$. Let $H_{1}(D)$ be the Sobolev space which is the completion of $C^{\infty *}(D)$ under $\|u\|_{1}$. For a function q of the special type encountered in $\S 1$, let $H_{1}^{q}(D)$ be the Sobolev space which is the completion of $C^{\infty *}(D)$ under the norm

$$
\|u\|_{q}^{2}=\int_{D} \sum_{i=1}^{n}\left|D_{i} u\right|^{2}+q|u|^{2} d x .
$$

Let $\stackrel{\circ}{H}_{1}$ and $\stackrel{\circ}{H}_{1}^{q}$ be the completions of $C_{0}^{\infty}(D)$ with respect to $\|u\|_{1}$ and $\|u\|_{q}$. The reader who is not familiar with the Sobolev spaces can find a discussion of their calculus in Nirenberg [5].

1. An integral inequality.

Theorem 1.1. Let D be smooth enough to apply Gauss' Theorem. Let $a_{i k}(x)$ be hermitian positive definite, $a_{i k} \in C^{1}(D)$, and let $f_{1}, f_{2}, \cdots f_{n}$ be continuously differentiable complex valued functions of x, for all

