REMARK ON A PROBLEM OF NIVEN AND ZUCKERMAN

Abstract

R. T. Bumby and E. C. Dade

An integer of an algebraic number field K is called irreducible if it has no proper integer divisors in K. Every integer of K can be written as a product of irreducible integers, usually in many different ways. Various problems have been inspired by this lack of unique factorization. This paper studies the question: When are the irreducible integers of K determined by their norms? Attention is confined to the case in which K is a quadratic field. With this assumption it is possible to give a complete answer in terms of the ideal class group of K and the nature of the units of K.

The fields sought in this problem are those quadratic fields K (with $N: K \rightarrow Q$ denoting the norm) which satisfy

Property N: If α is an irreducible integer of K and β is another integer of K such that $N \alpha=N \beta$, then β is also irreducible.

In many cases Property N can be studied by looking at the class group H of K. However the study is complicated by the existence of quadratic number fields K satisfying:
(1) K is real and $N \varepsilon=+1$, for every unit ε of K.

When K satisfies (1), we are forced to consider an extended class group H^{\prime} of K defined as follows:

Two nonzero fractional ideals $\mathfrak{a}, \mathfrak{b}$ are said to be strongly equivalent if $\mathfrak{a} \cdot \mathfrak{b}^{-1}=(\gamma)$ is a principal ideal generated by an element γ of positive norm. This is clearly an equivalence relation. The strong equivalence classes form the group H^{\prime} under the usual multiplication. There are two strong equivalence classes of principal ideals: the class σ consisting of all principal ideals (α) such that one, and hence all, generators of (α) have negative norm; and the identity class 1 of principal ideals (α) all of whose generators have positive norm. Clearly $\sigma^{2}=1$, and the class group H is naturally isomorphic to $H^{\prime} \mid\langle\sigma\rangle$.

If K does not satisfy (1), notice that H^{\prime}, as defined above, and the class group H coincide.

In any case, if \mathfrak{p} is any prime ideal of K and \mathfrak{p}^{\prime} is the conjugate prime ideal, then $\mathfrak{p} \cdot \mathfrak{p}^{\prime}=(N \mathfrak{p})$. But $N(N \mathfrak{p})=(N \mathfrak{p})^{2}>0$. So
(2) \mathfrak{p} and \mathfrak{p}^{\prime} lie in inverse strong equivalence classes.

Our main result is

