TENSOR PRODUCTS OF GROUP ALGEBRAS

BERNARD R. GELBAUM

Let G, H, K be locally compact abelian groups where K is noncompact and both the quotient G/N^{G} where N^{G} is a compact (normal) subgroup and the quotient H/N^{H} where N^{H} is a compact (normal) subgroup. Then in a natural fashion the group algebras $L_{1}(G)$ and $L_{1}(H)$ are modules over $L_{1}(K)$ and

$$L_1(G) \bigotimes_{L_1(K)} L_1(H) \cong L_1(K)$$
.

In [2, 3, 4, 5] there are discussions of tensor products of Banach spaces and Banach algebras over the field @ of complex numbers and over general Banach algebras. We note the following results to be found in these papers:

(i) If A, B, C are commutative Banach algebras and if A and B are bimodules over C (where $|| ca || \leq || c || || a ||, || cb || \leq || c || || b ||, a \in A$, $b \in B, c \in C$) then the space \mathfrak{M}_{D} of maximal ideals of $D \equiv A \bigotimes_{\sigma} B$ may be identified with a subset of $\mathfrak{M}_{A} \times \mathfrak{M}_{B}$ as follows:

$$\mathfrak{M}_{\mathcal{D}} = \{(M_{\scriptscriptstyle A},\,M_{\scriptscriptstyle B}): M_{\scriptscriptstyle A} \in \mathfrak{M}_{\scriptscriptstyle A},\,M_{\scriptscriptstyle B} \in \mathfrak{M}_{\scriptscriptstyle B},\,\mu(M_{\scriptscriptstyle A}) =
u(M_{\scriptscriptstyle B})
eq \mathrm{null map}\}$$
.

(Here μ and ν are continuous mappings of \mathfrak{M}_A and \mathfrak{M}_B into $\mathfrak{M}_c^\circ =$ the maximal ideal space of C with the null map adjoined. These maps are defined as follows: If $a \in A, b \in B, c \in C$ then

$$a^{\wedge}(M_{\scriptscriptstyle A})c^{\wedge}(\mu(M_{\scriptscriptstyle A})) = ca^{\wedge}(M_{\scriptscriptstyle A}) \ b^{\wedge}(M_{\scriptscriptstyle B})c^{\wedge}(
u(M_{\scriptscriptstyle B})) = cb^{\wedge}(M_{\scriptscriptstyle B})$$
 .

Finally

$$egin{aligned} c(a \otimes b)^{\wedge}(M_{\scriptscriptstyle A},\,M_{\scriptscriptstyle B}) &= c^{\wedge}(\mu(M_{\scriptscriptstyle A}))a^{\wedge}(M_{\scriptscriptstyle A})b^{\wedge}(M_{\scriptscriptstyle B}) \ &= c^{\wedge}(
u(M_{\scriptscriptstyle B}))a^{\wedge}(M_{\scriptscriptstyle A})b^{\wedge}(M_{\scriptscriptstyle B}) \;. \end{aligned}$$

[3].)

(ii) If G, H, K are locally compact abelian groups and if $\theta_g: K \to G$, $\theta_H: K \to H$ are continuous homomorphisms with closed images, then $L_1(G)$ and $L_1(H)$ are $L_1(K)$ -bimodules according to the formulas:

$$egin{aligned} ca(\xi) &= \int_K a(\xi - heta_{ extsf{d}}(\zeta)) c(\zeta) d\zeta, \, a \in L_1(G), \, c \in L_1(K) \, \, . \ cb(\eta) &= \int_K b(\eta - heta_{ extsf{H}}(\zeta)) c(\zeta) d\zeta, \, b \in L_1(H), \, c \in L_1(K) \, \, . \end{aligned}$$

Furthermore the mappings μ and ν of (i) are simply the dual mappings