ADDITION THEOREMS FOR SETS OF INTEGERS

Calvin T. Long

Let C be a set of integers. Two subsets A and B of C are said to be complementing subsets of C in case every $c \in C$ is uniquely represented in the sum

$$
C=A+B=\{x \mid x=a+b, a \in A, b \in B\} .
$$

In this paper we characterize all pairs A, B of complementing subsets of

$$
N_{n}=\{0,1, \cdots, n-1\}
$$

for every positive integer n and show some interesting connections between these pairs and pairs of complementing subsets of the set N of all nonnegative integers and the set I of all integers. We also show that the number $C(n)$ of complementing subsets of N_{n} is the same as the number of ordered nontrivial factorizations of n and that

$$
2 C(n)=\sum_{d \backslash n} C(d) .
$$

The structure of complementing pairs A and B has been studied by de Bruijn [1], [2], [3] for the cases $C=I$ and $C=N$ and by A. M. Vaidya [7] who reproduced a fundamental result of de Bruijn for the latter case. In case $C=N$ it is easy to see that $A \cap B=\{0\}$ and that $1 \in A \cup B$. Moreover, if we agree that $1 \in A$, it follows from the work of de Bruijn, that, except in the trivial case $A=N, B=\{0\}$, A and B are infinite complementing subsets of N if and only if there exists an infinite sequence of integers $\left\{m_{i}\right\}_{i \geqq 1}$ with $m_{i} \geqq 2$ for all i, such that A and B are the sets of all finite sums of the form

$$
\begin{align*}
a & =\sum x_{2 i} M_{2 i}, \tag{1}\\
b & =\sum x_{2 i+1} M_{2 i+1}
\end{align*}
$$

respectively where $0 \leqq x_{i}<m_{i+1}$ for $i \geqq 0$ and where $M_{0}=1$ and $M_{i}=\prod_{j=1}^{i} m_{j}$ for $i \geqq 1$. In the remaining case, when just one of A and B is infinite, the same result holds except that the sequence $\left\{m_{i}\right\}$ is of finite length r and that $x_{r} \geqq 0$. Similar results can also be obtained in the case of complementing k-tuples of subsets of N for $k>2$.

The case $C=I$ is much more difficult and, while sufficient conditions are easily given, necessary and sufficient conditions that a pair A, B be complementing subsets of I are not known. As an example of sufficient conditions, we note that if A and B are as in (1) above, then A and $-B$ form a pair of complementing subsets of I. This is

