$A W^{*}$-ALGEBRAS ARE $Q W^{*}$-ALGEBRAS

B. E. Johnson

Abstract

G. A. Reid has introduced a class of B^{*}-algebras called $Q W^{*}$-algebras which includes the W^{*}-algebras and which is included in the class of $A W^{*}$-algebras. In this paper it is shown that the $Q W^{*}$-algebras are exactly the $A W^{*}$-algebras.

We shall use Reid's notation (see [2]) without further explanation.
Theorem. Let A be an $A W^{*}$-algebra. Then A is a $Q W^{*}$-algebra.
Proof. Let B be a norm-closed *-subalgebra of A. Then, using [1; Theorem 2.3] we see that A contains a hermitian idempotent P such that $P A$ is the right annihilator of B. Since B is a *-subalgebra we see that the left annihilator of B is $(P A)^{*}=A P$. Thus $B_{0}=$ $A P \cap P A=P A P$ and $B_{00}=(I-P) A(I-P)$. It follows by [1; Theorem 2.4] that $B_{00} \supset B$ is an $A W^{*}$-algebra with identity $I-P$.

Using the Gelfand-Naimark Theorem [3; 244] we can consider B_{00} as an algebra of operators on a hilbert space H where the identity in B_{00} corresponds to the identity operator I_{H} in H. Let $(\mathscr{T}, \mathscr{S})$ be a double centraliser on B and let T be the element of $\mathscr{B}(H)$ corresponding to (\mathscr{T}, \mathscr{S}) under the isomorphism in [2; Proposition 3]. We have $T B \subset B, B T \subset B$ and wish to show that there is an element S of B_{00} with $S L=T L$ and $L S=L T$ for all $L \in B$.

We may clearly suppose T to be symmetric since the general case follows by considering separately the real and imaginary parts of T. Let K be the closed linear subspace of H generated by $B H$ and P_{K} the orthogonal projection onto K. Let $\left\{F_{\lambda}\right\}$ be the spectral family of T [4; p. 275] and put $E_{\lambda}=P_{K} F_{\lambda}=F_{\lambda} P_{K} . \quad\left\{E_{\lambda}\right\}$ is essentially the spectral family of T considered as an operator in K. Define

$$
\begin{array}{ll}
C_{\lambda}=\left\{P_{K} f(T) ; f \in C(\sigma(T)), f\left(\lambda^{\prime}\right)=0\right. & \text { for } \left.\lambda^{\prime} \leqq \lambda\right\} \\
D_{\lambda}=\left\{P_{K} f(T) ; f \in C(\sigma(T)), f\left(\lambda^{\prime}\right)=0\right. & \text { for } \left.\lambda^{\prime} \geqq \lambda\right\}
\end{array}
$$

where $C(\sigma(T))$ is the set of continuous complex valued functions on $\sigma(T)$. The elements of C_{λ}, D_{λ} are essentially functions of T in $\mathscr{B}(K)$. Since the elements of C_{λ} and D_{λ} are limits in the uniform operator topology of sequences of polynomials in T we see that $C_{\lambda} B, D_{\lambda} B, B C_{\lambda}$ and $B D_{\lambda}$ are subsets of B and hence of B_{00}. Using Kaplansky's result [1; Theorem 2.3] we can find an orthogonal projection $P_{\lambda} \in B_{00}$ such that $P_{\lambda} B_{00}$ is the right annihilator of $B C_{\lambda}$ in B_{00}. Since B_{00} contains I_{H} we see $P_{\lambda} \in P_{\lambda} B_{00}$ and so $B C_{\lambda} P_{\lambda}=\{0\}$ and $P_{\lambda} C_{\lambda} B=\{0\}$. Thus for $\xi \in B H$, and hence for $\xi \in K, P_{\lambda} C_{\lambda} \xi=\{0\}$. However for $\xi \in H \ominus K, C_{\lambda} \xi=\{0\}$ and

