AW^* -ALGEBRAS ARE QW^* -ALGEBRAS

B. E. JOHNSON

G. A. Reid has introduced a class of B^* -algebras called QW^* -algebras which includes the W^* -algebras and which is included in the class of AW^* -algebras. In this paper it is shown that the QW^* -algebras are exactly the AW^* -algebras.

We shall use Reid's notation (see [2]) without further explanation.

THEOREM. Let A be an AW^* -algebra. Then A is a QW^* -algebra.

Proof. Let B be a norm-closed *-subalgebra of A. Then, using [1; Theorem 2.3] we see that A contains a hermitian idempotent P such that PA is the right annihilator of B. Since B is a *-subalgebra we see that the left annihilator of B is $(PA)^* = AP$. Thus $B_0 = AP \cap PA = PAP$ and $B_{00} = (I - P)A(I - P)$. It follows by [1; Theorem 2.4] that $B_{00} \supset B$ is an AW^* -algebra with identity I - P.

Using the Gelfand-Naimark Theorem [3; 244] we can consider B_{00} as an algebra of operators on a hilbert space H where the identity in B_{00} corresponds to the identity operator I_H in H. Let $(\mathcal{T}, \mathcal{S})$ be a double centraliser on B and let T be the element of $\mathcal{B}(H)$ corresponding to $(\mathcal{T}, \mathcal{S})$ under the isomorphism in [2; Proposition 3]. We have $TB \subset B, BT \subset B$ and wish to show that there is an element S of B_{00} with SL = TL and LS = LT for all $L \in B$.

We may clearly suppose T to be symmetric since the general case follows by considering separately the real and imaginary parts of T. Let K be the closed linear subspace of H generated by BH and P_{κ} the orthogonal projection onto K. Let $\{F_{\lambda}\}$ be the spectral family of T [4; p. 275] and put $E_{\lambda} = P_{\kappa}F_{\lambda} = F_{\lambda}P_{\kappa}$. $\{E_{\lambda}\}$ is essentially the spectral family of T considered as an operator in K. Define

$$C_{\lambda} = \{ P_{\kappa} f(T); f \in C(\sigma(T)), f(\lambda') = 0 \text{ for } \lambda' \leq \lambda \}$$
$$D_{\lambda} = \{ P_{\kappa} f(T); f \in C(\sigma(T)), f(\lambda') = 0 \text{ for } \lambda' \geq \lambda \}$$

where $C(\sigma(T))$ is the set of continuous complex valued functions on $\sigma(T)$. The elements of C_{λ} , D_{λ} are essentially functions of T in $\mathscr{B}(K)$. Since the elements of C_{λ} and D_{λ} are limits in the uniform operator topology of sequences of polynomials in T we see that $C_{\lambda}B$, $D_{\lambda}B$, BC_{λ} and BD_{λ} are subsets of B and hence of B_{00} . Using Kaplansky's result [1; Theorem 2.3] we can find an orthogonal projection $P_{\lambda} \in B_{00}$ such that $P_{\lambda}B_{00}$ is the right annihilator of BC_{λ} in B_{00} . Since B_{00} contains I_{H} we see $P_{\lambda} \in P_{\lambda}B_{00}$ and so $BC_{\lambda}P_{\lambda} = \{0\}$ and $P_{\lambda}C_{\lambda}B = \{0\}$. Thus for $\xi \in BH$, and hence for $\xi \in K$, $P_{\lambda}C_{\lambda}\xi = \{0\}$. However for $\xi \in H \bigoplus K$, $C_{\lambda}\xi = \{0\}$ and