FUNCTIONS WITH REAL POLES AND ZEROS

R. Redheffer

Throughout this paper $\left\{\lambda_{n}\right\}$ is a real sequence with $\lambda_{n} \neq 0$ and $\lambda_{n} \leqq \lambda_{n+1},-\infty<n<\infty$. The counting function $\Lambda_{1}(u)$ is the number of λ_{n} between 0 and u, counted negatively for negative u. Similarly μ_{n} is a real sequence with $\mu_{n} \neq 0$ and with counting function $\Lambda_{2}(u)$. In this summary (which corresponds to the case $p=1$ of the paper) we define

$$
F(z)=\Pi \frac{\left(1-z / \lambda_{n}\right) e^{z / \lambda_{n}}}{\left(1-z / \mu_{n}\right) e^{z / \mu_{n}}}
$$

by taking all factors for which λ_{n} and μ_{n} lie on the interval $(-R, R)$ and then letting $R \rightarrow \infty$. Our objective is to obtain conditions on the growth of $F(z)$ from conditions on the function $\Lambda(u)=\Lambda_{1}(u)-\Lambda_{2}(u)$.

Denoting the even part of $\Lambda(u)$ by $\Lambda_{e}(u)$, we can state our first result as follows: Suppose $\Lambda(u)=O(u)$ and

$$
\lim _{r \rightarrow \infty}\left(\frac{\Lambda(u r)}{u r}-\frac{\Lambda(r / u)}{r / u}\right)=0
$$

for each $u \neq 0$. Then

$$
\log \left|F\left(r e^{i \theta}\right)\right|=\pi \Lambda(r)|\sin \theta|-2 \Lambda_{e}(r) \theta \sin \theta+r \cos \theta \int_{-r}^{r} \frac{\Lambda(u)}{u^{2}} d u
$$

apart from an error term $\eta r \log |2 \csc \theta|$, where $\eta \rightarrow 0$ uniformly in $0<|\theta|<\pi$ as $r \rightarrow \infty$. This improves theorems of Pfluger, Kahane and Rubel, Cartwright, and others, in that we do not assume existence of $\lim \Lambda(u) / u$, we do not assume that F is entire or even, and the error term has a convergent integral with respect to θ. Similar theorems for functions with negative poles and zeros, given later in the paper, generalize other familiar results. Here the error term involves $\log \left(2 \sec \frac{1}{2} \theta\right)$.

Another kind of result is briefly described as follows: Let $R=R(x)$ and $S=S(x)$ be positive functions such that the ratios $x / R, R / x, x / S, S / x$ are bounded as $|x| \rightarrow \infty$. Then for many purposes the function

$$
\log F(z)-z \int_{-|x|}^{|x|} \frac{\Lambda(u)}{u^{2}} d u
$$

can be replaced by the function

$$
\Lambda^{*}(z ; R, S)=\int_{x-R}^{x+S} \frac{\Lambda(u)}{z-u} d u .
$$

This remark is given content by detailed estimates of the error and of Λ^{*}. (For simplicity of statement the text takes $R=S$ but the form mentioned here is sometimes more con-

