THE STRUCTURE SPACE OF A COMMUTATIVE LOCALLY *M*-CONVEX ALGEBRA

R. M. BROOKS

If A is a commutative Banach algebra with identity, then the sets \mathscr{M} (all maximal ideals), \mathscr{M}_c (all closed maximal ideals), \mathscr{M}_1 (kernels of nonzero C-valued homomorphisms of A), and \mathscr{M}_0 (kernels of nonzero continuous C-valued hommorphisms of A) coincide. If A is a commutative complete locally m-convex algebra, one has only $\mathscr{M}_c = \mathscr{M}_0 \subset \mathscr{M}_1 \subset \mathscr{M}$, and the containments can be proper. Our goal is to investigate \mathscr{M} and its relationship to \mathscr{M}_0 ; specifically (1) to give a description of $\mathscr{M}(A)$ in terms of A and $\mathscr{M}_0(A)$ which is valid for at least the class of F-algebras, (2) to determine when $\mathscr{M}(A)$ is one of the standard compactifications (Wallman, Stone-Čech) of $\mathscr{M}_0(A)$.

For many locally *m*-convex algebras, especially algebras of functions, one can determine \mathscr{M}_0 . However, descriptions of \mathscr{M} and its relationship to \mathscr{M}_0 seem to be limited to special cases; for example, Hewitt's description of $\mathscr{M}(C(X))$ [5] and Kakutani's description of \mathscr{M} for the algebra of analytic functions in the unit disc [6]. We show that a commutative complete locally *m*-convex algebra A generates a lattice \mathscr{L} on \mathscr{M}_0 , and that if we impose a rather natural restriction on A, then \mathscr{M} is the space of ultrafilters of \mathscr{L} . We give necessary and sufficient conditions on A in order that (1) \mathscr{M} is the Wallman compactification of (\mathscr{M}_0 , hull-kernel), (2) \mathscr{M} is the Wallman compactification of (\mathscr{M}_0 , Gelfand). In the second case, we show that $\mathscr{M} = \beta \mathscr{M}_0$ and obtain a correspondence between \mathscr{M}_1 and the A-realcompactification of (\mathscr{M}_0 .

We then specialize to *F*-algebras and show (1) *F*-algebras always satisfy the condition imposed in the general situation, (2) \mathcal{M} is the Wallman compactification of (\mathcal{M}_0 , hull-kernel), and (3) $\mathcal{M} = \beta \mathcal{M}_0$, whenever the algebra is regular.

1. The general case. A locally *m*-convex algebra (hereafter LMC algebra) is a locally convex Hausdorff topological algebra A whose topology is given by a family of pseudonorms (submultiplicative, convex, symmetric functionals). For the basic properties of these algebras the reader is referred to [1] or [9]. In this paper we shall restrict our attention to complete algebras with identity element 1. If λ is a complex number we shall write " λ " for " λ ·1".

The structure space of A is the set \mathcal{M} of all maximal ideals of