CHARACTERISTIC POLYNOMIALS OF SYMMETRIC MATRICES

Edward A. Bender

Let F be a field and p an F-polynomial. We say that p is F-real if and only if every real closure of F contains the splitting field of p over F. Our main purpose is to prove

Theorem 1. Let F be an algebraic number field and p a monic F-polynomial with an odd degree factor over F. Then p is F-real if and only if it is the characteristic polynomial of a symmetric F-matrix.

That p must be F-real follows from work of Krakowski [4, Satz 3.3]. To prove the coverse we generalize results of Sapiro [6] in Lemma 1 and Theorem 3. Sapiro deals with the case in which p is a cubic. Theorem 4 considers the minimum dimension of symmetric matrices with a given root.
2. A basic lemma. In our proof we shall study congruence classes of certain symmetric matrices which are defined below. We shall denote congruence of the matrices A and B over the field F (i.e., $A=T B T^{\prime}$ for some nonsingular F-matrix T) by $A \sim B(F)$.

Definition. Let G be a field with subfield F. If $\lambda \in G$ is nonzero and if $\alpha_{1}, \cdots, \alpha_{n}$ form a basis for G (as a vector space) over F, define the matrices $M=\left\|\alpha_{i}^{(j)}\right\|$ and $D(\lambda)=\operatorname{diag}\left(\lambda^{(1)}, \cdots, \lambda^{(n)}\right)$ where superscripts denote conjugacy over F. We call

$$
A=A(\lambda)=M D(\lambda) M^{\prime}
$$

a matrix from G to F. Clearly

$$
a_{i j}=\operatorname{tr}_{G / F}\left(\lambda \alpha_{i} \alpha_{j}\right)
$$

If $\mathscr{A}=\Sigma \oplus G_{i}$ where the G_{i} are extension fields of F, and if A_{i} is a matrix from G_{i} to F, then any matrix congruent to $\Sigma \bigoplus A_{i}$ over F is called a matrix from \mathscr{A} to F. Note that a different choice for the basis $\alpha_{1}, \cdots, \alpha_{n}$ would lead to a matrix congruent to $A(\lambda)$ over F.

Lemma 1. Let F be a field and $p=q_{1} \cdots q_{m}$ a monic F-polynomial decomposed into prime factors over F. Assume that the splitting field of p over F is a separable extension of F. If the identity is a matrix from

$$
\left.\sum_{i}^{m} \oplus F[x] /\left(q_{i}\right)\right)
$$

