CHARACTERISTIC POLYNOMIALS OF SYMMETRIC MATRICES

EDWARD A. BENDER

Let F be a field and p an F-polynomial. We say that p is F-real if and only if every real closure of F contains the splitting field of p over F. Our main purpose is to prove

THEOREM 1. Let F be an algebraic number field and pa monic F-polynomial with an odd degree factor over F. Then p is F-real if and only if it is the characteristic polynomial of a symmetric F-matrix.

That p must be F-real follows from work of Krakowski [4, Satz 3.3]. To prove the coverse we generalize results of Sapiro [6] in Lemma 1 and Theorem 3. Sapiro deals with the case in which p is a cubic. Theorem 4 considers the minimum dimension of symmetric matrices with a given root.

2. A basic lemma. In our proof we shall study congruence classes of certain symmetric matrices which are defined below. We shall denote congruence of the matrices A and B over the field F (i.e., A = TBT' for some nonsingular F-matrix T) by $A \sim B(F)$.

DEFINITION. Let G be a field with subfield F. If $\lambda \in G$ is nonzero and if $\alpha_1, \dots, \alpha_n$ form a basis for G (as a vector space) over F, define the matrices $M = ||\alpha_i^{(j)}||$ and $D(\lambda) = \text{diag}(\lambda^{(1)}, \dots, \lambda^{(n)})$ where superscripts denote conjugacy over F. We call

$$A = A(\lambda) = MD(\lambda)M'$$

a matrix from G to F. Clearly

$$a_{ij} = \operatorname{tr}_{G/F}(\lambda \alpha_i \alpha_j)$$
.

If $\mathscr{A} = \Sigma \bigoplus G_i$ where the G_i are extension fields of F, and if A_i is a matrix from G_i to F, then any matrix congruent to $\Sigma \bigoplus A_i$ over Fis called a matrix from \mathscr{A} to F. Note that a different choice for the basis $\alpha_1, \dots, \alpha_n$ would lead to a matrix congruent to $A(\lambda)$ over F.

LEMMA 1. Let F be a field and $p = q_1 \cdots q_m$ a monic F-polynomial decomposed into prime factors over F. Assume that the splitting field of p over F is a separable extension of F. If the identity is a matrix from

$$\sum_{1}^{m} \bigoplus F[x]/(q_{i}))$$