DUAL GROUPS OF VECTOR SPACES

WILLIAM C. WATERHOUSE

Let E be a topological vector space over a field K having a nontrivial absolute value. Let E' be the dual space of continuous linear maps $E \to K$, and \hat{E} the dual group of continuous characters $E \to R/Z$. \hat{E} is a vector space over Kby $(a\varphi)(x) = \varphi(ax)$, and composition with a nonzero character of K is a linear map of E' into \hat{E} . This map is always an isomorphism if K is locally compact, while if K is not locally compact it is never an isomorphism unless $\hat{E} = 0$. When Kis locally compact, E' is in addition topologically isomorphic to \hat{E} if each is given its topology of uniform convergence on compact sets. This leads to conditions on E which imply that E is topologically isomorphic to $(\hat{E})^{\uparrow}$.

THEOREM 1. Let K be a field with absolute value. Then \hat{K} is one-dimensional over K if and only if K is locally compact.

Proof. The sufficiency of local compactness is fairly well known (cf. [4, p. 92-3] for the characteristic zero case). To prove it, one takes a nonzero character π of K and considers the subspace $K\pi$ of \hat{K} . It is easy to check that $a \mapsto a\pi$ is a bicontinuous linear map, so $K\pi$ is complete and hence closed in \hat{K} . On the other hand, $K\pi$ separates the points of K, so by Pontrjagin duality it is dense in \hat{K} . Thus $\hat{K} = K\pi$.

Suppose conversely that \hat{K} is one-dimensional, and choose a nonzero π in \hat{K} . The completion of K will again be a field, say L, and π extends to a character of L. Then every $a \in L$ gives a character $a\pi$ of L. If $a \neq b$, then a - b is invertible, and so $\pi((a - b)c)$ cannot be zero for all c. Thus no two of the characters $a\pi$ are equal, and hence no two can agree on the dense set K. This contradicts onedimensionality of \hat{K} unless K = L, and we conclude that K must be complete. Hence if K is archimedean, it is locally compact.

We now assume that K is nonarchimedean. Let $A = \{x : |x| \leq 1\}$, $M = \{x : |x| < 1\}$. Let π be a character of the discrete group A/Mwith $\pi(1) \neq 0$; we extend π to a character of the discrete group K/Mand interpret it as an element of \hat{K} . Let c > 1 be an element of the value group, and consider the group G_c/M , where $G_c = \{x : |x| \leq c\}$. All characters of this discrete group extend to characters of K vanishing on M, and by one-dimensionality they all come from multiples of π .

Now if $a \in A$, then $aM \subset M$, so $a\pi$ vanishes on M; conversely, if $a\pi$ vanishes on M, then $1/a \notin M$ and $a \in A$. Similarly, $a\pi$ vanishes