A COUNTER-EXAMPLE TO A FIXED POINT CONJECTURE

Earl J. Taft

Let A be a finite-dimentional commutative Jordan algebra over a field F of characteristic zero. Then we may write $A=S+N, S$ a semisimple subalgebra (Wedderburn factor), N the radical of A, [5], [6]. If G is a completely reducible group of automorphisms of A, then we may choose S to be invariant under G, [4]. If G is finite, then we showed in [10] that any two such G-invariant S were conjugate via an automorphism σ of A which centralizes G and which is a product of exponentials of nilpotent inner derivations of A of the form $\sum\left[R_{a_{i}}, R_{x_{i}}\right], x_{i}$ in N, a_{i} in A, where R_{a} is multiplication by a in A. It was conjectured in [10] that the various elements x_{i} and a_{i} which occur in the formulation of σ could be chosen as fixed points of G. This conjecture was based on analogous fixed point results proved for associative and Lie algebras, [7], [8], [9]. However, this conjecture is false, and we present in this note a simple counter-example.

We consider three-by-three matrices over F. Denoting by $e_{i j}$ the usual matrix units, set $e=e_{11}+e_{22}, f=e_{33}$ and $x=e_{31}$. Consider the Jordan algebra A with basis e, f, x and multiplication table

	e	f	x
e	$2 e$	0	x
f	0	$2 f$	x
x	x	x	0

Clearly A has a one-dimensional radical $N=F x$, and $S(0)=$ $F e+F f$ is a Wedderburn factor of A. By [2], all Wedderburn factors are isomorphic, so are spanned by two orthogonal idempotents. The only idempotents (nonzero) of A are ($e / 2$) $+\alpha x,(f / 2)+\beta x, \alpha, \beta$ in F. The only pairs of orthogonal idempotents are $(e / 2)+\alpha x,(f / 2)-\alpha x$, α in F. Hence the Wedderburn factors of A are of the form $S(\alpha)=$ $F(e+\alpha x)+F(f-\alpha x)$, and clearly $\alpha \rightarrow S(\alpha)$ is one-to-one.

A has two types of automorphisms, as can be seen by a direct check. The first type $A(\delta, \pi), \delta, \pi$ in $F, \pi \neq 0$, is given by:

