UNCOUNTABLY MANY ALMOST POLYHEDRAL
 WILD ($k-2$)-CELLS IN E ${ }^{k}$ FOR $k \geqq 4$

Leslie C. Glaser

In [1] infinitely many almost polyhedral wild ares were constructed in E^{3} so as to have an end point as the "bad' point. In [5] uncountably many almost polyhedral wild ares were constructed in E^{3} with an interior point as the "bad" point. In [4] Doyle and Hocking constructed an almost polyhedral wild disk in E^{4} with the property that the proof of the nontameness is perhaps the most elementary possible. They state that essentially the same construction yields a wild ($n-2$)-disk in E^{n} for $n \geqq 4$. Here, making use of the construction given in [4], we prove that for each $k \geqq 4$, there exist uncountably many almost polyhedral wild ($k-2$)-cells in E^{k}. To obtain the above result we also prove that for each $k \geqq 3$, there exist countably many polyhedral locally flat ($k-2$)-spheres in E^{k} so that the fundamental groups of the complements of these spheres are all distinct and given any two of these groups, one is not the surjective image of the other.

A set S in E^{k} is polyhedral if it can be covered by a finite rectilinear subcomplex of E^{k}. A $(k-2)$-cell D in E^{k} is almost polyhedral if for some point $q \in D, D-\{q\}$ can be covered by an infinite locally finite rectilinear subcomplex of $E^{k}-\{q\}$. The ($k-2$)-cells constructed here all have $q \in \operatorname{Bd} D . \quad D$ is wild if there does not exist a homeomorphism h of E^{k} onto itself such that $h(D)$ is a finite rectilinear subcomplex of E^{k}. An n-manifold $M^{n} \subset E^{k}$ is locally flat if each $p \in \operatorname{int} M(p \in \operatorname{Bd} M)$ has a neighborhood U in E^{k} such that the pair ($U, U \cap M$) is homeomorphic as pairs to $\left(E^{k}, E^{n}\right)$ (to $\left(E^{k}, E_{+}^{n}\right)$).

Theorem 1. There exist countably many polyhedral simple closed curves $\left\{J_{n}\right\}(n=1,2,3, \cdots)$ in E^{3} so that if $G_{n} \cong \pi_{1}\left(E^{3}-J_{n}\right)$, then for all positive integers n and $m(n \neq m), G_{n} \not \equiv Z$ and $G_{n} \not \equiv G_{m}$. Furthermore, if $m>n$, then there is no surjection of G_{m} onto G_{n}.

Proof. Expressing points of E^{3} in terms of cylindrical coordinates (θ, r, z), let T be the "unknotted" torus $(r-2)^{2}+z^{2}=1$. Let $K_{p, q}$ denote the torus knot of type p, q, where p and q are relatively prime nonnegative integers and $K_{p, q}$ is a curve on the surface T that cuts a merdian in p points and a longitude in q points. More precisely, $K_{p, q}$ is defined by the equations $r=2+\cos (q \theta / p)$ and $z=\sin (q \theta / p)$.

