ON SUBGROUPS OF FIXED INDEX

GEORGE K. WHITE

If $k \in \mathcal{K}$, where \mathcal{K} is a subgroup of a group \mathcal{S} , then closure implies $k^2, k^3, \dots, \in \mathcal{K}$. Nonempty subsets $S \subset \mathcal{S}$ with the inverse property $s^m \in S$ implies $s, s^2, \dots, s^m \in S$ (m =1, 2, \cdots) will be called *stellar sets*. Let p^{α} be a fixed prime power. If a stellar set S of an *abelian* group \mathcal{S} intersects every subgroup \mathcal{H} of index p^{α} in \mathcal{S} , and $0 \notin S$, then the cardinal |S| of S is bounded below by p^{α} (Theorem 3), when \mathcal{S} satisfies a mild condition.

Hence for instance a subset S of euclidean *n*-space E_n intersecting all sublattices of determinant p^{α} of the fundamental lattice will have at least p^{α} elements, and more if no element is divisible by p^{α} .

Henceforth \mathscr{S} will always be an additive abelian group, so a stellar set will be one with

(1)
$$\emptyset \neq S \subset \mathscr{S}$$

 $mg \in S \Rightarrow g, 2g, \cdots, mg \in S(g \in \mathscr{S}, m = 1, 2, \cdots)$.

Examples of stellar sets are \mathscr{S} itself, and its *periodic part* [5, p. 137]; and a *star set* [7] is a symmetric stellar set. There are stellar sets of one element s, i.e., those s for which $s = mg(m = 1, 2, \dots)$ implies m = 1. Now let p be a fixed prime, and suppose S intersects every subgroup \mathscr{K} of \mathscr{S} of index p. Suppose also

$$(2)$$
 $0 \notin S$

(if $0 \in S$ the intersection property is redundant). Then we can say the following (in this paper we denote $|A| = \text{cardinal of } A, mA = \{ma; a \in A\}$, for any set A and integer m):

THEOREM 1. Let p be a fixed prime, S an abelian group, and S a stellar set with $0 \in S$ which intersects all subgroups \mathcal{K} of index $S : \mathcal{K} = p$. Then

$$(\,3\,) \hspace{1.5cm} |S| \geqq p \;.$$

When $S \cap p\mathscr{S} = \emptyset$ we have |S| > p.

A similar result holds for ordinary sets T:

THEOREM 2. Suppose p is a fixed prime, S is an abelian group with more than one subgroup of index p, and T is any subset of S with