ON SUBGROUPS OF FIXED INDEX

George K. White

Abstract

If $k \in \mathscr{K}$, where \mathscr{K}^{-}is a subgroup of a group \mathscr{S}, then closure implies $k^{2}, k^{3}, \cdots, \in \mathscr{K}$. Nonempty subsets $S \subset \mathscr{P}$ with the inverse property $s^{m} \in S$ implies $s, s^{2}, \cdots, s^{m} \in S(m=$ $1,2, \cdots$) will be called stellar sets. Let p^{α} be a fixed prime power. If a stellar set S of an abelian group \mathscr{S} intersects every subgroup \mathscr{C} of index p^{α} in \mathscr{S}, and $0 \notin S$, then the cardinal $|S|$ of S is bounded below by p^{α} (Theorem 3), when \mathscr{S} satisfies a mild condition.

Hence for instance a subset S of euclidean n-space E_{n} intersecting all sublattices of determinant p^{α} of the fundamental lattice will have at least p^{α} elements, and more if no element is divisible by p^{α}.

Henceforth \mathscr{S} will always be an additive abelian group, so a stellar set will be one with

$$
\begin{gather*}
\varnothing \neq S \subset \mathscr{S} \\
m g \in S \Rightarrow g, 2 g, \cdots, m g \in S(g \in \mathscr{S}, m=1,2, \cdots) . \tag{1}
\end{gather*}
$$

Examples of stellar sets are \mathscr{S} itself, and its periodic part [5, p. 137]; and a star set [7] is a symmetric stellar set. There are stellar sets of one element s, i.e., those s for which $s=m g(m=1,2, \cdots)$ implies $m=1$. Now let p be a fixed prime, and suppose S intersects every subgroup \mathscr{K} of \mathscr{S} of index p. Suppose also

$$
\begin{equation*}
0 \notin S \tag{2}
\end{equation*}
$$

(if $0 \in S$ the intersection property is redundant). Then we can say the following (in this paper we denote $|A|=$ cardinal of $A, m A=$ $\{m a ; a \in A\}$, for any set A and integer m):

Theorem 1. Let p be a fixed prime, \mathscr{S} an abelian group, and S a stellar set with $0 \in S$ which intersects all subgroups \mathscr{N} of index $\mathscr{S}: \mathscr{K}=p$. Then

$$
\begin{equation*}
|S| \geqq p \tag{3}
\end{equation*}
$$

When $S \cap p \mathscr{S}=\varnothing$ we have $|S|>p$.
A similar result holds for ordinary sets T :
Theorem 2. Suppose p is a fixed prime, \mathscr{S} is an abelian group with more than one subgroup of index p, and T is any subset of \mathscr{S} with

