NONOSCILLATORY SOLUTIONS OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS

Lynn H. Erbe

We consider here a generalization of the equation

$$
x^{\prime \prime}+a(t) x^{2 n+1}=0
$$

```
where }a(t)\mathrm{ is a continuous non-negative function on [0,+m)
and n\geqq0 is an integer. Necessary and sufficient conditions
are given for the existence of
```

(1) a bounded nonoscillatory solution with prescribed limit at ∞;
(2) a nonoscillatory solution whose derivative has a positive limit at ∞.

Specifically, we are concerned with the asymptotic behavior of the solutions of the following second order nonlinear differential equation :

$$
\begin{equation*}
x^{\prime \prime}+f(t, x) g\left(x^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

We shall assume the following conditions hold :

$$
f(t, x), g\left(x^{\prime}\right) \text {, and the partial derivative function }
$$

$\left(A_{0}\right) \quad f_{x}(t, x)$ are all continuous for $t \geqq 0, x^{\prime} \geqq 0$, and $|x|<+\infty$.

$$
\begin{equation*}
f(t, 0)=0, t \geqq 0 \tag{1}
\end{equation*}
$$

$\left(A_{2}\right) \quad f_{x}(t, x) \geqq 0$ and is nondecreasing in x for $t \geqq 0$ and $x \geqq 0$.

$$
\begin{equation*}
g\left(x^{\prime}\right)>0 \text { for all } x^{\prime} \geqq 0 \tag{3}
\end{equation*}
$$

As a special case we have the equation

$$
\begin{equation*}
x^{\prime \prime}+a(t) x^{2 n+1}=0, n \geqq 0, \tag{2}
\end{equation*}
$$

in which $a(t) \geqq 0$ for $t \geqq 0$ and $g\left(x^{\prime}\right)=1$ for all x^{\prime}. Oscillatory and nonoscillatory properties of (2) for the case $n \geq 1$ were investigated by Atkinson in [1], Moore and Nehari in [5], and Utz in [9]. Generalizations of equation (2) have been considered by Waltman in [7] and [8], Nehari in [6], Wong in [10], and Macki and Wong in [4].

We shall study equation (1) by considering the equation

$$
\begin{equation*}
x^{\prime \prime}+f_{x}(t, \alpha) x=0 \tag{3}
\end{equation*}
$$

where α is some real constant depending on solutions of (1). To do this we shall need to establish several lemmas concerning the equation

