NONOSCILLATORY SOLUTIONS OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS

LYNN H. ERBE

We consider here a generalization of the equation

$$x'' + a(t)x^{2n+1} = 0$$

where a(t) is a continuous non-negative function on $[0, +\infty)$ and $n \ge 0$ is an integer. Necessary and sufficient conditions are given for the existence of

- (1) a bounded nonoscillatory solution with prescribed limit at ∞ ;
- (2) a nonoscillatory solution whose derivative has a positive limit at ∞ .

Specifically, we are concerned with the asymptotic behavior of the solutions of the following second order nonlinear differential equation:

(1)
$$x'' + f(t, x)g(x') = 0.$$

We shall assume the following conditions hold:

f(t, x), g(x'), and the partial derivative function

 $(A_{\scriptscriptstyle 0})$ $f_{\scriptscriptstyle x}(t,\,x)$ are all continuous for $t \geq 0,\; x' \geq 0,$ and $\mid x \mid < + \; \infty$.

$$f(t,0) = 0, t \ge 0.$$

 (A_2) $f_x(t,x) \ge 0$ and is nondecreasing in x for $t \ge 0$ and $x \ge 0$.

$$(A_3) g(x') > 0 for all x' \ge 0.$$

As a special case we have the equation

$$(2) x'' + a(t)x^{2n+1} = 0, n \ge 0,$$

in which $a(t) \ge 0$ for $t \ge 0$ and g(x') = 1 for all x'. Oscillatory and nonoscillatory properties of (2) for the case $n \ge 1$ were investigated by Atkinson in [1], Moore and Nehari in [5], and Utz in [9]. Generalizations of equation (2) have been considered by Waltman in [7] and [8], Nehari in [6], Wong in [10], and Macki and Wong in [4].

We shall study equation (1) by considering the equation

$$(3) x'' + f_x(t,\alpha)x = 0,$$

where α is some real constant depending on solutions of (1). To do this we shall need to establish several lemmas concerning the equation