THE δ^2 -PROCESS AND RELATED TOPICS II

RICHARD R. TUCKER

This paper considers three transforms of a complex series Σa_n : namely, (1) Aitken's ∂^2 -transform Σb_n , (2) Lubkin's W-transform Σc_n , and (3) a closely related transform Σd_n which the author calls the W1-transform and for which $\sum_{0}^{n} d_k = \sum_{0}^{n+1} c_k$. If $a_{n-1} \neq 0$, set $r_n = a_n/a_{n-1}$. If, moreover, Σa_n converges, define $T_n = (a_n + a_{n+1} + \cdots)/a_{n-1}$ and let $MR(\Sigma a_n)$ be the class of all series converging more rapidly to the sum $S = \Sigma a_n$ than Σa_n . Some of the results proven in this paper are as follows:

(1) If $b_n/a_n \rightarrow 0$, then the three conditions (i) $\Sigma b_n \in MR(\Sigma a_n)$,

(ii) $\Sigma c_n \in MR(\Sigma a_n)$, and (iii) $\Sigma d_n \in MR(\Sigma a_n)$ are equivalent.

(2) $\Sigma b_n \in MR(\Sigma a_n)$ if and only if $\Delta T_n \to 0$.

(3) If $|r_n| \leq \rho < 1$ for all sufficiently large n, then the three conditions (i) $\Sigma b_n \in MR(\Sigma a_n)$, (ii) $\Delta r_n \to 0$, and (iii) $b_n/a_n \to 0$ are equivalent.

Samuel Lubkin has given several sufficient conditions for $\Sigma b_n \in MR(\Sigma a_n)$ in case Σa_n is a real series. The third result above contains a generalization of one of his results to the complex plane while relaxing some of his hypothesis.

The following results on complex products are also proven:

(4) If the sequence $\{1/a_n - 1/a_{n-1}\}$ is bounded, then the product $\Pi_0^{\infty} (1 + a_n)$ diverges.

(5) Suppose that $|r_n| \leq \rho < 1$ for all sufficiently large *n* and $a_n \neq -1$ for all *n*. Then a necessary and sufficient condition for the δ^2 -transform to accelerate the convergence of the infinite product $\Pi_0^{\infty} (1 + a_n)$ is that $\Delta r_n \to 0$.

The notations and definitions set forth in Tucker [2] will be used in this paper. In particular, $S_n = a_0 + a_1 + \cdots + a_n$, $\Sigma a_n = \sum_{0}^{\infty} a_n$, and $S = \Sigma a_n$ if Σa_n is convergent. Given a second series $\Sigma a'_n$ we use the notation $S'_n = a'_0 + \cdots + a'_n$, $r'_n = a'_n/a'_{n-1}$ for $a'_{n-1} \neq 0$, $S' = \Sigma a'_n$ and $T'_n = (S' - S'_{n-1})/a'_{n-1}$ for $a'_{n-1} \neq 0$. Likewise, given a "transform sequence" $\{\alpha_n\}, \alpha_n$ complex, we set $S_{\alpha n} = S_n + a_{n+1}\alpha_{n+1}$ for $n \ge 0$, $a_{\alpha 0} =$ $S_{\alpha 0} = a_0 + a_1\alpha_1$, and $a_{\alpha n} = S_{\alpha n} - S_{\alpha(n-1)}$ for $n \ge 1$.

The transform sequences associated with the δ^2 , W, and W1 transforms are defined respectively as follows:

(i) $\alpha_n = 1/(1 - r_n), n \ge 1,$

(ii)
$$\alpha_1 = -\alpha_0/\alpha_1; \alpha_n = (1 - r_{n-1})/(1 - 2r_n + r_{n-1}r_n), n \ge 2,$$

(iii) $\alpha_n = (1 - r_{n+1})/(1 - 2r_{n+1} + r_n r_{n+1}), n \ge 1.$

Whenever division by zero occurs in (i), we set $\alpha_n = 0$. We do likewise for (ii) and (iii). As in Tucker [2], we retain the notation