THE δ^{2}-PROCESS AND RELATED TOPICS II

Richard R. Tucker

This paper considers three transforms of a complex series Σa_{n} : namely, (1) Aitken's δ^{2}-transform Σb_{n}, (2) Lubkin's W transform Σc_{n}, and (3) a closely related transform Σd_{n} which the author calls the W 1-transform and for which $\sum_{0}^{n} d_{k}=$ $\sum_{0}^{n+1} c_{k}$. If $a_{n-1} \neq 0$, set $r_{n}=a_{n} / a_{n-1}$. If, moreover, Σa_{n} converges, define $T_{n}=\left(a_{n}+a_{n+1}+\cdots\right) / a_{n-1}$ and let $M R\left(\Sigma a_{n}\right)$ be the class of all series converging more rapidly to the sum $S=\Sigma a_{n}$ than Σa_{n}. Some of the results proven in this paper are as follows:
(1) If $b_{n} / a_{n} \rightarrow 0$, then the three conditions (i) $\Sigma b_{n} \in M R\left(\Sigma a_{n}\right)$, (ii) $\Sigma c_{n} \in M R\left(\Sigma a_{n}\right)$, and (iii) $\Sigma d_{n} \in M R\left(\Sigma a_{n}\right)$ are equivalent.
(2) $\Sigma b_{n} \in M R\left(\Sigma a_{n}\right)$ if and only if $\Delta T_{n} \rightarrow 0$.
(3) If $\left|\boldsymbol{r}_{n}\right| \leqq \rho<1$ for all sufficiently large n, then the three conditions (i) $\Sigma b_{n} \in M R\left(\Sigma a_{n}\right)$, (ii) $\Delta r_{n} \rightarrow 0$, and (iii) $b_{n} / a_{n} \rightarrow$ 0 are equivalent.

Samuel Lubkin has given several sufficient conditions for $\Sigma b_{n} \in M R\left(\Sigma a_{n}\right)$ in case Σa_{n} is a real series. The third result above contains a generalization of one of his results to the complex plane while relaxing some of his hypothesis.

The following results on complex products are also proven:
(4) If the sequence $\left\{1 / a_{n}-1 / a_{n-1}\right\}$ is bounded, then the product $\Pi_{0}^{\infty}\left(1+a_{n}\right)$ diverges.
(5) Suppose that $\left|r_{n}\right| \leqq \rho<1$ for all sufficiently large n and $a_{n} \neq-1$ for all n. Then a necessary and sufficient condition for the δ^{2}-transform to accelerate the convergence of the infinite product $\Pi_{0}^{\infty}\left(1+a_{n}\right)$ is that $\Delta r_{n} \rightarrow 0$.

The notations and definitions set forth in Tucker [2] will be used in this paper. In particular, $S_{n}=a_{0}+a_{1}+\cdots+a_{n}, \Sigma a_{n}=\sum_{0}^{\infty} a_{n}$, and $S=\Sigma a_{n}$ if Σa_{n} is convergent. Given a second series Σa_{n}^{\prime} we use the notation $S_{n}^{\prime}=a_{0}^{\prime}+\cdots+a_{n}^{\prime}, r_{n}^{\prime}=a_{n}^{\prime} / a_{n-1}^{\prime}$ for $a_{n-1}^{\prime} \neq 0, S^{\prime}=\Sigma a_{n}^{\prime}$ and $T_{n}^{\prime}=\left(S^{\prime}-S_{n-1}^{\prime}\right) / a_{n-1}^{\prime}$ for $a_{n-1}^{\prime} \neq 0$. Likewise, given a "transform sequence" $\left\{\alpha_{n}\right\}, \alpha_{n}$ complex, we set $S_{\alpha n}=S_{n}+a_{n+1} \alpha_{n+1}$ for $n \geqq 0, a_{\alpha 0}=$ $S_{\alpha 0}=a_{0}+a_{1} \alpha_{1}$, and $a_{\alpha n}=S_{\alpha n}-S_{\alpha(n-1)}$ for $n \geqq 1$.

The transform sequences associated with the δ^{2}, W, and $W 1$ transforms are defined respectively as follows:
(i) $\alpha_{n}=1 /\left(1-r_{n}\right), n \geqq 1$,
(ii) $\quad \alpha_{1}=-a_{0} / a_{1} ; \alpha_{n}=\left(1-r_{n-1}\right) /\left(1-2 r_{n}+r_{n-1} r_{n}\right), n \geqq 2$,
(iii) $\quad \alpha_{n}=\left(1-r_{n+1}\right) /\left(1-2 r_{n+1}+r_{n} r_{n+1}\right), n \geqq 1$.

Whenever division by zero occurs in (i), we set $\alpha_{n}=0$. We do likewise for (ii) and (iii). As in Tucker [2], we retain the notation

