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HYPOTOPOLOGICAL SPACES AND THEIR
EMBEDDINGS IN LATTICES WITH
BIRKHOFF INTERVAL TOPOLOGY

KirBy A. BAKER

Important classes of topological spaces have topologies
which are induced by a generating collection of closed subsets;
typical examples are k-spaces, sequential spaces with unique
sequential limits, and lattices with the Birkhoff interval topo-
logy. This paper proceeds by axiomatizing this construction
—a set with a specified generating collection of closed subsets
is called a ‘“‘hypotopological space.”” The Birkhoff interval
topology is then studied in these terms. A natural embed-
ding of hypotopological spaces in conditionally complete, ato-
mic, distributive lattices with Birkhoff interval topology is
derived. This embedding is used to show that lattices with
Birkhoff interval topology have the same nontrivial subspace
and product properties as k-spaces and sequential spaces., In
particular, we answer in the negative a question first raised
by Birkhoff, namely, whether the Birkhoff interval topology
is preserved under the formation of the product of two lat-
tices.

The Birkhoff interval topology was defined in [5]. It is one of
the most natural of the various topologies which have been proposed
for lattices, and yet is one of the least amenable to explicit calcula-
tion. Certain cases have proven tractable: For partially ordered sets
with universal bounds (0 and 1), the Birkhoff interval topology coin-
cides with the Frink interval topology [15], under which the closed
intervals form a subbase for the closed sets. In general, however, it
is difficult to determine the closure of a given subset of a lattice with
respect to this topology. It is for this reason that several basic ques-
tions regarding subspaces and products have proven elusive for the
Birkhoff interval topology.

Subspace and product properties of k-spaces and sequential spaces
have been studied by Franklin [12, 13], Cohen [9], Dowker [10], Dudley
[11], Michael [19, 20], and others. Birkhoff noted that a conditionally
complete lattice is itself a k-space under his interval topology [5, Th.
3]. For the Birkhoff interval topology, products of chains were studi-
ed by Alo and Frink [1]. In particular, they answered Birkhoff’s
question in the infinite case by showing that the Birkhoff interval to-
pology is not preserved under infinite products of chains. The example
derived in the present paper answers Birkhoff’s question for the finite
case (see Corollary 6.8 below).
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