THE MAXIMAL SET OF CONSTANT WIDTH IN A LATTICE

G. T. Sallee

Abstract

A new construction for sets of constant width is employed to determine the largest such set which will fit inside a square lattice.

A set W in E^{2} is said to have constant width λ (denoted $\omega(W)=\lambda$) if the distance between each pair of parallel supporting lines of W is λ. If $x \in \mathrm{bd} W$ we will denote all points opposite x (that is, at a distance λ from x) in W by $0(x)$.

In what follows we will be most concerned with Reuleaux polygons, which are sets of constant width λ whose boundaries consist of an odd number of arcs of radius λ centered at other boundary points (see [2], p. 128, for a more complete description).

We say a set S avoids another set X if int $S \cap X=\varnothing$.

Theorem 1. Let L be a square planar unit lattice. Then the unique set of maximal constant width which avoids L is a Reuleaux triangle T having width $\omega(T)>1.545$. An axis of symmetry of T parallels one of the major axex of L and is midway between two parallel rows of the lattice.

The proof depends upon a variational method for altering Reuleaux polygons which will be described in $\S 2$. A useful lemma is also proved there. In $\S 3$ the proof of the theorem is given, while various generalizations are discussed in $\S 4$.

The construction described in the next section was also found independently by Mr. Dale Peterson.
2. Variants of sets of constant width. Let P be a set of constant width λ and p_{0} a point near P but exterior to it. Suppose that q and r are the two points on the boundary of P which are at a distance λ from p_{0}. Let Q be the convex set whose boundary is following: the shorter arc of the circle $C\left(p_{0}, \lambda\right)$ [the circle of radius λ centered at p_{0}] between q and r, the boundary of P from r to q^{\prime} (a point opposite q), an arc of $C(q, \lambda)$ between q^{\prime} and p_{0}, an arc of $C(r, \lambda)$ between p_{0} and r^{\prime}, and the boundary of P from r^{\prime} to q [see Figure 1]. We call Q the p_{0}-variant of P. It is easy to see that Q is a set of constant width λ. In order for the construction to work p_{0} must be close enough to P so that the boundary arc of P between q and

