A NOTE ON CERTAIN DUAL SERIES EQUATIONS INVOLVING LAGUERRE POLYNOMIALS

H. M. Srivastava

In this paper an exact solution is obtained for the dual series equations

$$
\begin{array}{lll}
\text { (1) } & \sum_{n=0}^{\infty} \frac{A_{n}}{\Gamma(\alpha+n+1)} L_{n}^{(\alpha)}(x)=f(x), & 0 \leqq x<y, \\
\text { (2) } & \sum_{n=0}^{\infty} \frac{A_{n}}{\Gamma(\alpha+\beta+n)} L_{n}^{(\sigma)}(x)=g(x), & y<x<\infty, \tag{2}
\end{array}
$$

where $\alpha+\beta+1>\beta>1-m, \sigma+1>\alpha+\beta>0, m$ is a positive integer,

$$
L_{n}^{(\alpha)}(x)=\binom{\alpha+n}{n}_{1} F_{1}[-n ; \alpha+1 ; x],
$$

is the Laguerre polynomial and $f(x)$ and $g(x)$ are prescribed functions.

The method used is a generalization of the multiplying factor technique employed by Lowndes [4] to solve a special case of the above equations when

$$
\sigma=\alpha, A_{n}=\Gamma(\alpha+n+1) \Gamma(\alpha+\beta+n) C_{n}, \alpha+\beta>0 \quad \text { and } \quad 1>\beta>0
$$

In another paper by the present author [5] equations (1) and (2) have been solved by considering separately the equations when (i) $g(x) \equiv 0$, (ii) $f(x) \equiv 0$, and reducing the problem in each case to that of solving an Abel integral equation. Indeed it is easy to verify that the solution obtained earlier [5] is in complete agreement with the one given in this paper.
2. The following results will be required in the analysis.
(i) The orthogonality relation for Laguerre polynomials given by [3, p. 292 (2)] and [3, p. 293 (3)]:

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x} x^{\alpha} L_{m}^{(\alpha)}(x) L_{n}^{(\alpha)}(x) d x=\frac{\Gamma(\alpha+n+1)}{n!} \delta_{m n}, \alpha>-1, \tag{3}
\end{equation*}
$$

where $\delta_{m n}$ is the Kronecker delta.
(ii) The formula (27), p. 190 of [2] in the form:

$$
\begin{equation*}
\frac{d^{m}}{d x^{m}}\left\{x^{\alpha+m} L_{n}^{(\alpha+m)}(x)\right\}=\frac{\Gamma(\alpha+m+n+1)}{\Gamma(\alpha+n+1)} x^{\alpha} L_{n}^{(\alpha)}(x) . \tag{4}
\end{equation*}
$$

(iii) The following forms of the known integrals [2, p. 191 (30)] and [3, p. 405 (20)]:

