LINEAR TRANSFORMATIONS OF TENSOR PRODUCTS PRESERVING A FIXED RANK

D. Ž. DJoкоvić

In this paper T is a linear transformation from a tensor product $X \otimes Y$ into $U \otimes V$, where X, Y, U, V are vector spaces over an infinite field F. The main result gives a characterization of surjective transformations T for which there is a positive integer $k(k<\operatorname{dim} U, k<\operatorname{dim} V)$ such that whenever $z \in X \otimes Y$ has rank k then also $T z \in U \otimes V$ has rank k. It is shown that $T=A \otimes B$ or $T=S \circ(C \otimes D)$ where A, B, C, D are appropriate linear isomorphisms and S is the canonical isomorphism of $V \otimes U$ onto $U \otimes V$.

Let F be an infinite field and X, Y, U, V vector spaces over F. We denote by T a linear transformation of the tensor product $X \otimes Y$ into $U \otimes V$. The rank of a tensor $z \in X \otimes Y$ is denoted by $\rho(z)$. By definition $\rho(0)=0$. The subspace of X spaned by the vectors $x_{1}, \cdots, x_{n} \in X$ will be denoted by $\left\langle x_{1}, \cdots, x_{n}\right\rangle$.

Lemma 1. Let k be a positive integer such that $z \in X \otimes Y$ and $\rho(z)=k$ imply that $\rho(T z)=k$. Then $\rho(z) \leqq k$ implies that $\rho(T z) \leqq k$ for all z.

Proof. If this is not true then for some $z \in X \otimes Y, z \neq 0$, we have $\rho(z)<k$ and $\rho(T z)>k$. There exists $t \in X \otimes Y$ such that $\rho(t)+\rho(z)=k$ and moreover $\rho(z+\lambda t)=k$ for all $\lambda \neq 0, \lambda \in F$. Let

$$
T z: \quad \sum_{i=1}^{m} u_{i} \otimes v_{i}, \quad m=\rho(T z)
$$

Since $u_{i} \in U$ are linearly independent and also $v_{i} \in V$ we can consider them as contained in a basis of U and V, respectively. The matrix of coordinates of $T z$ has the form

where I_{m} is the identity $m \times m$ matrix. Let

be the matrix of coordinates of $T t$. Then the minor $\left|I_{m}+\lambda A_{m}\right|$ of the matrix of $T(z+\lambda t)$ has the form

