AN EMBEDDING THEOREM FOR LATTICE-ORDERED FIELDS

PAUL CONRAD AND JOHN DAUNS

In this paper we develop a method for constructing latticeordered fields (" \mathscr{L} -fields") which are not totally ordered ("ofields") and hence are not f-rings. We show that many of these fields admit a Hahn type embedding into a field of formal power series with real coefficients. In order to establish such an embedding we make use of the valuation theory for abelian \mathscr{L} -groups and prove the "well known" fact that each o-field can be embedded in an o-field of formal power series.

Let G be an \mathscr{L} -field that contains n disjoint elements, but not n + 1 such elements. An element $0 < s \in G$ is special if there is a unique \mathscr{L} -ideal of (G, +) that is maximal without containing s. We show that the set S of special elements of G form a multiplicative group if and only if $S \neq \emptyset$ and $s^{-1} > 0$ for each $s \in S$. If this is the case, then there is a natural mapping of S onto the set Γ of all values of the elements of G. Thus Γ is a po-group and if, in addition, Γ is torsion free, then there exists an \mathscr{L} -isomorphism of G into the \mathscr{L} -field $V(\Gamma, R)$ of all functions v of Γ into the real field R whose support $\{\gamma \in \Gamma \mid v(\gamma) \neq 0\}$ satisfies the ascending chain condition. If G is an o-field, then the above hypotheses are satisfied and hence the embedding theorem for o-fields is a special case of our embedding theorem. The authors wish to thank the referee for many constructive suggestions.

NOTATION. If S is a subset of a group G, then [S] will denote the subgroup of G that is generated by S. If G is a *po*-group, then G^+ will denote the set $\{g \in G \mid g \ge 0\}$ of positive elements. A *disjoint* subset of an \mathscr{L} -group G is a set S of strictly positive elements such that $a \wedge b = 0$ for all pairs $a, b \in S$.

2. A method for constructing lattice-ordered rings. A po-set Γ is called a root system if for each $\gamma \in \Gamma$, the set $\{\alpha \in \Gamma \mid \alpha \geq \gamma\}$ is totally ordered. A nonvoid subset \varDelta of a root system Γ is called a *W*-set if it is the join of a finite number of inversely well ordered subsets of Γ , and an *I*-set if it is infinite and trivially ordered or well ordered with order type ω . In [2] it is shown that \varDelta is a *W*-set if and only if \varDelta does not contain an *I*-set; while in [10] five other conditions are derived which are equivalent to \varDelta not containing an *I*-set.