AN EMBEDDING THEOREM FOR LATTICE-ORDERED FIELDS

Paul Conrad and John Dauns

Abstract

In this paper we develop a method for constructing latticeordered fields (" \mathscr{L}-fields") which are not totally ordered (" o fields') and hence are not f-rings. We show that many of these fields admit a Hahn type embedding into a field of formal power series with real coefficients. In order to establish such an embedding we make use of the valuation theory for abelian \mathscr{L}-groups and prove the "well known" fact that each o-field can be embedded in an o-field of formal power series.

Let G be an \mathscr{L}-field that contains n disjoint elements, but not $n+1$ such elements. An element $0<s \in G$ is special if there is a unique \mathscr{L}-ideal of $(G,+)$ that is maximal without containing s. We show that the set S of special elements of G form a multiplicative group if and only if $S \neq \varnothing$ and $s^{-1}>0$ for each $s \in S$. If this is the case, then there is a natural mapping of S onto the set Γ of all values of the elements of G. Thus Γ is a po-group and if, in addition, Γ is torsion free, then there exists an \mathscr{L}-isomorphism of G into the \mathscr{L}-field $V(\Gamma, R)$ of all functions v of Γ into the real field R whose support $\{\gamma \in \Gamma \mid v(\gamma) \neq 0\}$ satisfies the ascending chain condition. If G is an o-field, then the above hypotheses are satisfied and hence the embedding theorem for o-fields is a special case of our embedding theorem. The authors wish to thank the referee for many constructive suggestions.

Notation. If S is a subset of a group G, then [S] will denote the subgroup of G that is generated by S. If G is a po-group, then G^{+}will denote the set $\{g \in G \mid g \geqq 0\}$ of positive elements. A disjoint subset of an \mathscr{L}-group G is a set S of strictly positive elements such that $a \wedge b=0$ for all pairs $a, b \in S$.
2. A method for constructing lattice-ordered rings. A po-set Γ is called a root system if for each $\gamma \in \Gamma$, the set $\{\alpha \in \Gamma \mid \alpha \geqq \gamma\}$ is totally ordered. A nonvoid subset Δ of a root system Γ is called a W-set if it is the join of a finite number of inversely well ordered subsets of Γ, and an I-set if it is infinite and trivially ordered or well ordered with order type ω. In [2] it is shown that Δ is a W set if and only if Δ does not contain an I-set; while in [10] five other conditions are derived which are equivalent to Δ not containing an I-set.

