POLYHEDRON INEQUALITY AND STRICT CONVEXITY

B. B. Phadke

Abstract

This paper considers convexity of functions defined on the "Grassmann cone" of simple r-vectors. It is proved that the strict polyhedron inequality does not imply strict convexity.

H. Busemann, in conjunction with others, (see [3]), has considered the problem of giving a suitable definition of the convexity of functions defined on nonconvex sets. An examination of various methods of defining convexity on the "Grassmann cone" (see [1]) is found in [2]. The most important open problems (see [3]) are whether weak convexity implies the area minimizing property (also called the polyhedron inequality) and whether the latter implies convexity. A modest result in this direction is proved below, namely, the strict area minimizing property does not imply strict convexity.
2. Basic definitions. Let a continuous function \mathscr{F} be defined on the Grassmann cone G_{r}^{n} of the simple r-vectors R in the linear space V_{r}^{n} of all r-vectors \widetilde{R} (over the reals). Let \mathscr{F} be positive homogeneous, i.e., $\mathscr{F}(\lambda R)=\lambda \mathscr{F}(R)$ for $\lambda \geqq 0$. To a Borel set F in an oriented r-flat \mathscr{R}^{+}in the n-dimensional affine space A^{n}, we associate a simple r-vector as follows: $R=0$ if F has r-dimensional measure 0 , and otherwise $R=v_{1} \wedge v_{2} \wedge \cdots \wedge v_{r}$, is parallel to \mathscr{R}^{+} and the measure of the parallelepiped spanned by $v_{1}, v_{2}, \cdots, v_{r}$ equals the measure of F. (Note a set of measure 0 and equality of measures in parallel r-flats are affine concepts and hence welldefined.) We denote below by \mathscr{R} an r-flat parallel to an r-vector R passing through the origin.

Definition 1. We say that \mathscr{F} has the strict area minimizing property (SFMA) if: Whenever $R_{0}, R_{1}, \cdots, R_{p}$ are associated to r dimensional faces of an r-dimensional oriented closed polyhedron P we have $\mathscr{F}\left(-R_{0}\right)<\Sigma \mathscr{F}\left(R_{i}\right)$, with $i=1$ to p, unless $R_{i}=\lambda_{i} R_{0}, \lambda_{i} \geqq 0$ for all $i=1$ to p (called the strict Polyhedron Inequality).

Definition 2. \mathscr{F} is said to be strictly weakly convex (SWC) if: Whenever R, R_{1} and R_{2} are simple, $R=R_{1}+R_{2}, R_{1}$ is not a scalar multiple of R_{2}, we have $\mathscr{F}(R)<\mathscr{F}\left(R_{1}\right)+\mathscr{F}\left(R_{2}\right)$.

Definition 3. \mathscr{F} is said to be convex (C) if there exists a convex extension of \mathscr{F} to V_{r}^{n}.

