APPROXIMATION BY INNER FUNCTIONS

R. G. Douglas and Walter Rudin

Let $L^{\infty}(T)$ denote the complex Banach algebra of (equivalence classes of) bounded measurable functions on the unit circle T, relative to Lebesgue measure m. The norm $\|f\|_{\infty}$ of an f in $L^{\infty}(T)$ is the essential supremum of $|f|$ on T. The collection of all bounded holomorphic functions in the open unit disc U forms a Banach algebra which can be identified (via radial limits) with the norm-closed subalgebra H^{∞} of $L^{\infty}(T)$.

A function f in $L^{\infty}(T)$ is unimodular if $|f|=1$ a.e., on T. The inner functions are the unimodular members of H^{∞}. It is well known that they play an important role in the study of H^{∞}.

The main result (Theorem 1) is that the set of quotients of inner functions is norm-dense in the set of unimodular functions in $L^{\infty}(T)$. One consequence of this (Theorem 7) is that the set of radial limits of holomorphic functions of bounded characteristic in U is norm-dense in $L^{\infty}(T)$. It is also shown (Theorem 3,4) that the Gelfand transforms of the inner functions separate points on the Silov boundary of H^{∞}, and this is used to obtain a new proof (and generalization) of a theorem of D. J. Newman (Theorem 4).

Our proof of the main result uses only one nontrivial property of H^{∞}, beyond the fact that H^{∞} is a norm-closed subalgebra of L^{∞}. It therefore applies, without any extra effort, to a much more general situation which we now describe.

Let now L^{∞} denote the Banach algebra of all bounded measurable functions on some measure space X, normed by the essential supremum, and let B be a norm-closed subalgebra of L^{∞}. We say that B has the annulus property if the following is true:

If X is the union of disjoint measurable sets E_{1} and E_{2} and if $0<r_{1}<r_{2}<\infty$, then there exists h in B such that
(1) $1 / h$ is in B, and
(2) $|h|=r_{i}$ a.e., on E_{i}, for $i=1,2$.

That H^{∞} (in the classical setting described above) has the annulus property is well known: to see it, put $u=r_{i}$ on E_{i} (now $T=E_{1} \cup E_{2}$), and define

$$
h(z)=\exp \left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log u\left(e^{i \theta}\right) d \theta\right\} \quad(z \in U)
$$

Then h maps U into the annulus $\left\{w: r_{1}<|w|<r_{2}\right\}$, and the radial limits of h have modulus r_{i} a.e., on E_{i}.

