ON LEFT QF-3 RINGS

Hiroyuki Tachikawa

In this paper the following results are proved:
(i) Three classes of left QF-3 rings are closed under taking left quotient rings respectively.
(ii) A subcategory of left modules having dominant dimensions $\geqq 2$ over a right perfect left QF-3 ring R is equivalent to a category of all left $f R f$-modules, where f is a suitable idempotent of R.
(iii) In case a left QF-3 ring is obtained as the endomorphism ring of a generator, dominant dimensions ($\geqq 2$) of modules are closely connected with the vanishing of Extfunctors.
(iv) Three classes of left and right QF-3 rings are identical in case of perfect rings.

Let R be an associative ring having an identity element 1 and denote by ${ }_{R} R$ (resp. R_{R}) a left (resp. right) R-module R. To generalize the notion of QF-3 algebras [18] we shall make the following definitions:
(1) R is said to be left QF-3, if ${ }_{n} R$ has a direct summand $R e$ (e is an idempotent of R) which is a faithful, injective left ideal.
(2) R is said to be left $\mathrm{QF}-3^{+}$, if the injective hull $E\left({ }_{R} R\right)$ of ${ }_{R} R$ is projective.
(3) R is said to be left QF-3', if the injective hull $E\left({ }_{R} R\right)$ of ${ }_{R} R$ is torsionless in the sense of Bass [1].

Right QF-3, QF- 3^{+}and QF-3' rings are defined in a similar fashion. It is obvious that the class of left QF- 3^{\prime} rings is the most general class of the above three classes.

Our main purpose in this note is to introduce some generalizations of results for QF-3 algebras [11], [12], [15], [16], [17] and semi-primary QF-3 rings [4], [6], [13], [14] to the above generalized classes of rings.

We shall say that the dominant dimension of left (resp. right) R-module X, denoted by dom. $\operatorname{dim}_{R} X\left(\right.$ resp. $\left.\operatorname{dom} . \operatorname{dim} X_{R}\right)$, is at least n, if there exists an injective resolution of X :

$$
0 \longrightarrow X \longrightarrow W_{1} \longrightarrow W_{2} \longrightarrow \cdots \longrightarrow W_{n}
$$

such that all $W_{i}, 1 \leqq i \leqq n$, are torsionless. Then it is clear that R is left (resp. right) QF-3' if and only if dom. $\operatorname{dim}_{R} R$ (resp. dom. $\operatorname{dim} R_{R}$) \geqq 1.

In §1 we shall show that each class defined as above is closed under taking quotient rings (not necessarily classical), that is, a left

