EXTENDING HOMEOMORPHISMS

JEROME L. PAUL

Theorem 1 of this paper establishes a necessary and sufficient condition that a locally flat imbedding $f: B^k \to R^n$ of a k-cell in euclidean n-space R^n admits an extension to a homeomorphism $F: R^n \to R^n$ onto R^n such that $F \mid (R^n - B^k)$ is a diffeomorphism which is the identity outside some compact set in R^n . An analogous result for locally flat imbeddings of a euclidean (n-1)-sphere into R^n is proved. A lemma which generalizes a theorem of Huebsch and Morse concerning Schoenflies extensions without interior differential singularities is also established.

Let the points of euclidean *n*-space R^n be written $x = (x^1, \dots, x^n)$, and provide R^n with the usual euclidean norm $||x|| = [\Sigma(x^i)^2]^{1/2}$. We set $S_r = \{x \in R^n \mid ||x|| = r\}$, (and $S = S_1$). If M is a topological (n-1)sphere in R^n , we denote the bounded component of $R^n - M$ by $\mathring{J}M$, and the closure of $\mathring{J}M$ in R^n by JM. We refer the reader to § 1 of [2] for the definition of the terms admissible cone K_z , conical point, axis of singular approach, and cone $K_z(\Sigma)$, where Σ is a euclidean (n-1)-sphere in R^n .

LEMMA 1. Let z be an arbitrary point of S and φ a sensepreserving homeomorphism into \mathbb{R}^n of an open neighborhood N of S such that φ carries points inside S to points inside $\varphi(S)$, and $\varphi \mid (N-S)$ is a \mathbb{C}^m -diffeomorphism. There then exists a homeomorphism Φ of \mathbb{R}^n onto \mathbb{R}^n and a cone K_z (resp. \check{K}_z) with axis interiorly normal (resp. exteriorly normal) to S at z, such that if $X \subset N$ is a sufficiently small open neighborhood of S,

$$arPsi_{x}(x) = arphi(x) \qquad [x \in X - \{K_{z}(S) \cup \check{K}_{z}\}],$$

 $\Phi \mid (R^n - S)$ is a C^m -diffeomorphism, and Φ is the identity outside some compact set in R^n .

REMARK. We note that a direct application of the proof of Theorem 1.2 of [2] will yield the conclusions of Lemma 1 except for single differential singularities in each component of $R^n - S$.

Proof of Lemma 1. The proof of Lemma 1 will be a variation of the proof of Theorem 1.2 of [2]. We can assume that $0 \in \mathring{J}\varphi(S)$. Let $\delta \in (\frac{1}{2}, 1)$ be a constant so near 1 that $S_{\delta} \subset N$. Using Theorem 1.1 of [2], there is a homeomorphism $f: JS \to \mathbb{R}^n$ into \mathbb{R}^n such that