EXTENDING HOMEOMORPHISMS

Jerome L. Paul

Abstract

Theorem 1 of this paper establishes a necessary and sufficient condition that a locally flat imbedding $f: B^{k} \rightarrow R^{n}$ of a k-cell in euclidean n-space R^{n} admits an extension to a homeomorphism $F: R^{n} \rightarrow R^{n}$ onto R^{n} such that $F \mid\left(R^{n}-B^{k}\right)$ is a diffeomorphism which is the identity outside some compact set in R^{n}. An analogous result for locally flat imbeddings of a euclidean ($n-1$)-sphere into R^{n} is proved. A lemma which generalizes a theorem of Huebsch and Morse concerning Schoenflies extensions without interior differential singularities is also established.

Let the points of euclidean n-space R^{n} be written $x=\left(x^{1}, \cdots, x^{n}\right)$, and provide R^{n} with the usual euclidean norm $\|x\|=\left[\Sigma\left(x^{i}\right)^{2}\right]^{1 / 2}$. We set $S_{r}=\left\{x \in R^{n} \mid\|x\|=r\right\}$, (and $S=S_{1}$). If M is a topological ($n-1$)sphere in R^{n}, we denote the bounded component of $R^{n}-M$ by $\grave{J} M$, and the closure of $\dot{J} M$ in R^{n} by $J M$. We refer the reader to $\S 1$ of [2] for the definition of the terms admissible cone K_{z}, conical point, axis of singular approach, and cone $K_{z}(\Sigma)$, where Σ is a euclidean ($n-1$)-sphere in R^{n}.

Lemma 1. Let z be an arbitrary point of S and φ a sensepreserving homeomorphism into R^{n} of an open neighborhood N of S such that ρ carries points inside S to points inside $\varphi(S)$, and $\varphi \mid(N-S)$ is a C^{m}-diffeomorphism. There then exists a homeomorphism Φ of R^{n} onto R^{n} and a cone K_{z} (resp. \breve{K}_{z}) with axis interiorly normal (resp. exteriorly normal) to S at z, such that if $X \subset N$ is a sufficiently small open neighborhood of S,

$$
\Phi(x)=\varphi(x) \quad\left[x \in X-\left\{K_{z}(S) \cup \check{K}_{z}\right\}\right]
$$

$\Phi \mid\left(R^{n}-S\right)$ is a C^{m}-diffeomorphism, and Φ is the identity outside some compact set in R^{n}.

Remark. We note that a direct application of the proof of Theorem 1.2 of [2] will yield the conclusions of Lemma 1 except for single differential singularities in each component of $R^{n}-S$.

Proof of Lemma 1. The proof of Lemma 1 will be a variation of the proof of Theorem 1.2 of [2]. We can assume that $0 \in \grave{J}_{\varphi}(S)$. Let $\delta \in\left(\frac{1}{2}, 1\right)$ be a constant so near 1 that $S_{\bar{\delta}} \subset N$. Using Theorem 1.1 of [2], there is a homeomorphism $f: J S \rightarrow R^{n}$ into R^{n} such that

