A CONJECTURE AND SOME PROBLEMS ON PERMANENTS

G. N. de Oliveira

Abstract

Let $A=\left[\alpha_{i j}\right]$ denote an $n \times n$ matrix and let E be the $n \times n$ identity matrix. We will designate by $\operatorname{det} A$ and perm A the determinant and the permanent of A respectively. The polynomial $\varphi(z)=\operatorname{det}(z E-A)$ plays a fundamental role in matrix theory. Similarly we can consider the polynomial $f(z)=\operatorname{perm}(z E-A)$ which has been object of several studies recently, particularly when A is a doubly stochastic matrix. The aim of the present paper is to give some results on the existence of matrices satisfying certain conditions involving the roots of this polynomial.

Let M_{n} and \mathscr{L}_{n} be the regions defined as follows: $z \in M_{n}$ if and only if there exists a stochastic matrix of order n with z as characteristic root; $\left(z_{1}, \cdots, z_{n}\right) \in \mathscr{I}_{n}$ if and only if there exists a stochastic matrix of order n whose n characteristic roots are the complex numbers z_{1}, \cdots, z_{n}.

Similarly we define the regions D_{n} and \mathscr{D}_{n} respectively when 'stochastic' is replaced by 'doubly stochastic'. M_{n} was determined by Karpelevič [3] but the determination of the other three regions seems to be a very difficult problem and has not yet been solved (see [7], [8], [9]).

Replacing in the definitions of $M_{n}, \mathscr{L}_{n}, D_{n}$ and \mathscr{D}_{n} 'characteristic root' by 'root of the polynomial $f(z)=\operatorname{perm}(z E-A)$ ' we can define four other regions which we shall denote by $M_{n}^{*}, \mathscr{I}_{n}^{*}, D_{n}^{*}$ and \mathscr{D}_{n}^{*} respectively. To our knowledge no attempt has been made to determine these regions. Their determination is likely to be a much harder problem than the determination of $M_{n}, \mathscr{M}_{n}, D_{n}$ and \mathscr{D}_{n}.

Some problems dealing with the characteristic values of a matrix (like some of the problems mentioned in [6]) can be replaced by similar problems dealing with the roots of

$$
f(z)=\operatorname{perm}(z E-A)
$$

Examples: (1) find a necessary and sufficient condition for the numbers a_{1}, \cdots, a_{n} and z_{1}, \cdots, z_{n} to be the principal elements of a symmetric A and the roots of $f(z)=$ perm $(z E-A)$ respectively; (2) find a necessary and sufficient condition for the numbers $\lambda_{1}, \cdots, \lambda_{n}$ and z_{1}, \cdots, z_{n} to be the characteristic roots of an $n \times n$ matrix A and the roots of $f(z)=\operatorname{perm}(z E-A)$ respectively. In the sequel we give some results on problems of this nature.
2. Let

