LOCALIZATION OF THE CORONA PROBLEM

T. W. GAMELIN

The corona problem for planar open sets D and the fibers of the maximal ideal space of $H^{\infty}(D)$ are discussed and shown to depend only on the local behavior of D.

Let D be an open subset of the Riemann sphere C^* , and let $H^{\infty}(D)$ be the uniform algebra of bounded analytic functions on D. We will assume always that $H^{\infty}(D)$ contains a nonconstant function, that is, that $C^* \setminus D$ has positive analytic capacity. Our object is to study the maximal ideal space $\mathscr{M}(D)$ of $H^{\infty}(D)$, and the "fibers" $\mathscr{M}_{\lambda}(D)$ of $\mathscr{M}(D)$ over points $\lambda \in \partial D$. The basis for our investigation is the observation that the fiber $\mathscr{M}_{\lambda}(D)$ depends only on the behavior of Dnear λ . This localization principle is used to obtain information related to the corona problem.

The corona of D is the part of $\mathscr{M}(D)$ which does not lie in the closure of D. Our main positive results are that D has no corona under either of the following assumptions:

(1) that the diameters of the components of $C^* \setminus D$ (in the spherical metric, if D is unbounded) be bounded away from zero; or

(2) that for some fixed $m \ge 0$, the complement of each component of D has $\le m$ components.

The proofs rest on the localization principle, and on Carleson's solution of the corona problem for the open unit disc [2]. Each of the above conditions includes the extension of Carleson's theorem to finitely connected planar domains due to Stout [9].

In the negative direction, we present an example, due to E. Bishop, of a connected one-dimensional analytic variety W which is not dense in the maximal space of $H^{\infty}(W)$. The construction is similar to that of Rosay [8].

1. Two basic lemmas. The localization process depends on the following two lemmas.

LEMMA 1.1. Let $\lambda \in \partial D$, and let U be an open neighborhood of λ . If $f \in H^{\infty}(D \cap U)$, there is $F \in H^{\infty}(D)$ such that F - f extends to be analytic at λ , and $(F - f)(\lambda) = 0$. Moreover, F can be chosen so that $||F||_{D} \leq 33||f||_{D \cap U}$.

Indication of proof. Suppose $U = \Delta(\lambda; \delta)$ is the disc of radius δ , centered at λ . Let g be a smooth function supported on U, such that g = 1 on $\Delta(\lambda; \delta/2)$, and $|\partial g/\partial \overline{z}| \leq 4/\delta$. Define f = 0 off D, and set