ON THE NUMBER OF NONPIERCING POINTS IN CERTAIN CRUMPLED CUBES

Robert J. Daverman

Let K denote the closure of the interior of a 2 -sphere S topologically embedded in Euclidean 3 -space E^{3}. If $K-S$ is an open 3-cell, McMillan has proved that K has at most one nonpiercing point. In this paper we use a more general condition restricting the complications of $K-S$ to describe the number of nonpiercing points. The condition is this: for some fixed integer $n K-S$ is the monotone union of cubes with n holes. Under this hypothesis we find that K has at most n nonpiercing points (Theorem 5). In addition, the complications of $K-S$ are induced just by these nonpiercing points. Generally, at least two such points are required, for otherwise $n=0$ (Theorem 3).

A space K as described above is called a crumpled cube. The boundary of K, denoted $\mathrm{Bd} K$, is defined by $\mathrm{Bd} K=S$, and the interior of K, denoted Int K, is defined by Int $K=K-\mathrm{Bd} K$. We also use the symbol Bd in another sense: if M is a manifold with boundary, then $\operatorname{Bd} M$ denotes the boundary of M. This should not produce any confusion.

Let K be a crumpled cube and p a point in $\operatorname{Bd} K$. Then p is a piercing point of K if there exists an embedding f of K in the 3sphere S^{3} such that $f(\mathrm{Bd} K)$ can be pierced with a tame arc at $f(p)$.

Let U be an open subset of S^{3}. The limiting genus of U, denoted $L G(U)$, is the least nonnegative integer n such that there exists a sequence H_{1}, H_{2}, \cdots of compact 3 -manifolds with boundary satisfying (1) $U=\cup H_{i}$, (2) $H_{i} \subset \operatorname{Int} H_{i+1}$, and (3) genus $\mathrm{Bd} H_{i}=n(i=1,2, \cdots)$. If no such integer exists, LG (U) is said to be infinite. Throughout this paper the manifolds H_{i} described above can be obtained with connected boundary, in which case H_{i} is called a cube with n holes.

Applications of the finite limiting genus condition are investigated in [6] and [14]. For any crumpled cube K such that LG(Int K) is finite and $\operatorname{Bd} K$ is locally peripherally collared from Int K, it is shown that $\mathrm{Bd} K$ is locally tame (from Int K) except at a finite set of points. Under the hypothesis of this paper, $\mathrm{Bd} K$ may be wild at every point; nevertheless, with a collapsing (in the sense of Whitehead [15]) argument comparable to [13, Th. 1], the problem of counting the nonpiercing points of K is reduced to one in which the results of [6] and [14] apply.

A subset X of the boundary of a crumpled cube K is said to be semi-cellular in K if for each open set U containing X there exists

