A DENSITY WHICH COUNTS MULTIPLICITY

Robert E. Dressler

Abstract

P. Erdös, using analytic theorems, has proven the following results: Let $f(x)$ be the number of integers m such that $\phi(m) \leqq x$, where ϕ is the Euler function, and let $g(x)$ be the number of integers n such that $\sigma(n) \leqq x$, where σ is the usual sum of divisors function. Then there are positive (but undetermined) constants c_{1} and c_{2} such that $f(x)=c_{1} x+o(x)$ and $g(x)=c_{2}(x)+o(x)$. The constants c_{1} and c_{2} can be calculated using complex analysis including the Wiener-Ikehara Theorem. A major purpose of this paper is to give an elementary proof that $\lim _{x \rightarrow \infty} f(x) / x$ exists and, in the process, calculate the value of the limit. These considerations of multiplicity motivate a generalization of natural density which counts multiplicity. This paper contains an investigation of this generalization.

Let $A=\left\{a_{i}\right\}_{i=1}^{\infty}$ be a sequence of positive real numbers $\geqq 1$. For a positive integer j, define $\#(A, j)$ to be the number of integers i such that $a_{i} \leqq j$ (that is, the number of elements of A counting multiplicity which are $\leqq j$). If $\lim \inf _{j \rightarrow \infty} \#(A, j) / j=\alpha$ (we allow $\alpha=\infty$) we say A has Δ-asymptotic density α and we define $\Delta(A)=\alpha$. We also define $\bar{J}(A)=\lim \sup _{j \rightarrow \infty} \#(A, j) / j$. If $\underline{\Delta}(A)=\bar{J}(A)$ we say A has Δ-natural density α and we define $\Delta(A)=\alpha$. It is clear that a reordering of A does not affect $\Delta(A)$ or $\bar{\Delta}(A)$. It is also clear that $\underline{\Delta}(A)=\underline{\Delta}\left(\left\{\left[a_{i}\right]\right\}_{i=1}^{\infty}\right)$ and $\bar{\Delta}(A)=\bar{\Delta}\left(\left\{\left[a_{i}\right]\right]_{i=1}^{\infty}\right)$ where $\left[a_{i}\right]$ is the greatest integer which does not exceed a_{i}. Unless otherwise specified all sequences in this paper will be of positive real numbers.

Throughout this paper d will denote natural density, i.e., the classical analog of Δ where multiplicity is not counted; Z^{+}will denote the set of positive integers; Q^{+}will denote the positive rational numbers; R^{+}will denote the set of positive real numbers; p will always be a prime; and $P=\left\{p_{i}\right\}_{i=1}^{\infty}$ will be the sequence, in the natural order, of primes.

If $\gamma: Z^{+} \rightarrow R^{+}$then to γ there corresponds the unique sequence $\gamma(1), \gamma(2), \cdots$. We will write γ in place of this sequence. Thus, for example, in the notation of this paper $\Delta(\phi)$ and $\Delta(\sigma)$ exist and are positive [5]. If for instance $\gamma=\tau$, where $\tau(n)=$ the number of positive integer divisors of the positive integer n, then it is clear that $\Delta(\tau)=\infty$.

If $A=\left\{a_{i}\right\}_{i=1}^{\infty}$ and $B=\left\{b_{j}\right\}_{j=1}^{\infty}$ are sequences then define $A+B$ to be the sequence, in the natural order, of positive real numbers x such that there exist i and $j \in Z^{+}$with $a_{i}+b_{j}=x$, and x appears in this

