COUNTABLE BOOLEAN ALGEBRAS AS SUBALGEBRAS AND HOMOMORPHS

T. E. CRAMER

The problem of classifying all countable Boolean algebras appears to be impossible to solve. This paper considers the following problem. Given a class \mathscr{C} of countable Boolean algebras, which is closed under isomorphisms, characterize the classes of

(i) all Boolean algebras which have subalgebras in \mathcal{C} ;

(ii) all subalgebras af members of \mathcal{C} ;

(iii) all homomorphs of members of \mathcal{C} ;

(iv) all Boolean algebras which have homomorphs in C.
Definitive characterizations are obtained for the first three classes (Theorems 7, 8, and 9), and a representation of the last class is obtained when C is the class of all countable Boolean algebras (Theorem II).

Given a Boolean algebra A, let X be the corresponding Boolean space. Define inductively: $D_0(X)$ as X; $D_1(X)$ as the complement of the isolated points in X; for any ordinal α , $D_{\alpha+1}(X)$ as $D_1(D_{\alpha}(X))$; and for a limit ordinal α , $D_{\alpha}(X)$ as $\cap \{D_{\beta}(X): \beta < \alpha\}$. Then $D_{\alpha}(X)$ is a closed subspace of X for each ordinal α . The Boolean algebra A is said to be superatomic if $D_{\alpha}(X) = \emptyset$, for some ordinal α . If γ is the last ordinal for which $D_{\gamma}(X) = \emptyset$, the cardinal sequence $\Gamma(A)$ of the superatomic Boolean algebra A is defined in [1] as the sequence of order type γ whose α -term is the cardinality of the set of isolated points of $D_{\alpha}(X)$, $\alpha < \gamma$. Note that each term of $\Gamma(A)$ is infinite except for the $\gamma - 1$ term, which must be finite.

If \mathscr{S} is the class of all superatomic Boolean algebras, the class $\{\Gamma(A): A \in \mathscr{S}\}\$ may be partially ordered by setting $\Gamma(A) \leq \Gamma(B)$ when the order type of $\Gamma(A)$ is not larger than that of $\Gamma(B)$, and when the α -term of $\Gamma(A)$ is not larger than the α -term of $\Gamma(B)$. It is shown in [4] that every countable superatomic Boolean algebra has as its Boolean space the ordinal $\omega^{\alpha}n + 1$ endowed with the order topology, for some countable ordinal α and natural numbers n. Thus the relation " \leq " well orders the class of cardinal sequences of countable superatomic Boolean algebras.

LEMMA 1. If X and Y are Boolean spaces, and θ is a continuous function from X onto Y, then $\theta[D_{\alpha}(X)]$ contains $D_{\alpha}(Y)$, for each ordinal α .

Proof. Assume that $\alpha = 1$, and that y is an element of Y -