A GENERALIZATION OF MARTINGALES AND TWO CONSEQUENT CONVERGENCE THEOREMS

LOUIS H. BLAKE

Loeve has observed that a discrete stochastic process can be interpreted as a game and that a martingale can be interpreted as a "fair" game. In this context, the notion of a martingale is enlarged to a game which becomes "fairer with time" and then this concept is utilized to establish two convergence theorems.

Let $(\Omega, \mathfrak{A}, p)$ be a probability space with $\{\mathfrak{A}_n\}_{n\geq 1}$ an increasing family of sub σ -algebras of \mathfrak{A} to which the process $\{X_n\}_{n\geq 1}$ is adapted, (see [3, p. 65]). Henceforth, the process $\{X_n\}_{n\geq 1}$ will be referred to as a game.

DEFINITION. The game $\{X_n\}_{n\geq 1}$ will be said to become fairer with time if for every $\varepsilon > 0$.

$$p[|E(X_n \mid \mathfrak{A}_m) - X_m \mid > arepsilon]
ightarrow 0$$

as $n, m \to \infty$ with $n \ge m$.

It should be noted that any martingale is a game which becomes fairer with time. An easy example of a game which is not a martingale or a sub or a super martingale but does become fairer with time is constructed by considering a game which consists of tossing a die. Here, let

 $\mathfrak{A}_n = \mathfrak{A}$, all n

and

$$X_n(\{i\}) \equiv i + (-1)^n/n$$
.

The main results. Let $\{\alpha_n : n \ge 1\}$ be a monotonic sequence decreasing to zero with finite sum. The game $\{X_n\}_{n\ge 1}$ may be decomposed with respect to $\{\alpha_n : n \ge 1\}$ as

(1.1)
$$X_n = Y_n - Z_n$$
, where $\{Y_n\}_{n \ge 1}$ and $\{Z_n\}_{n \ge 1}$

are defined inductively by:

(1.2)

$$Y_{1} = X_{1}$$

$$\vdots$$

$$Y_{n} = Y_{n-1} + [X_{n} - E(X_{n} | \mathfrak{A}_{n-1})] + \alpha_{n-1}$$