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ON THE SEMIGROUP OF BINARY RELATIONS

R. J. PLEMMONS AND M. T. WEST

The concepts of row and column bases for an element of
7 x, the semigroup of binary relations on a set X, are in-
troduced by interpreting a binary relation as a boolean matrix;
these ideas are then used to characterize the Green’s equiva-
lences on <Z ;. It is shown that the class of idempotent rela-
tions whose rows and columns form independent sets coincides
with the class of partial order relations on subsets of X. Re-
gularity in <&y is investigated using these results,

The Green’s relations and ideals in the semigroup of binary re-
lations <%, on a set X have been studied primarily in terms of lattice
considerations [11], [12]. In this paper we take a more computational
approach. By interpreting a relation as a boolean matrix, we introduce
the concept of row and column bases and use these ideas to obtain
useful characterizations of the Green’s relations & &, 57 and &
on .<#,. These results are then used to investigate the ideal structure
of <#,, in comparison to that of .77, the semigroup of transforma-
tions of X into X. Some simple tests for regularity of a binary re-
lation are obtained, and by characterizing reduced idempotent relations
we show that a regular relation must have the same row rank and
column rank.

These results have made possible the determination of the maximal
subgroups of <#; [6]. Moreover, the characterization of the Green’s
relations in terms of binary matrices will hopefully lead to an ex-
tension of the combinatorial results given in [4] and [9], in which
the numbers of idempotents in the & and 57 -classes of 7, are
investigated. Other applications may be found in Grapy Theory.

A Dbinary relation on a set X is a subset of X x X, and the set
of all binary relations on X is denoted by <#;. The product a8 of
two relations & and B on X is defined to be the relation

aB = {(a, b)|(a, ¢) e a and (¢, by e B for some ce X} .

The operation is associative and hence <& is a semigroup. The
semigroup &, of partial transformations on X is a subsemigroup of
% and it in turn contains .7, the semigroup of transformations
on X as a subsemigroup. It was the ideal structure of 7 that
motivated many of the ideas in this paper. (See [5] and [1] Vol. I,
pp. 51-55.)
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