NOTES ON COMMUTATIVE POWER JOINED SEMIGROUPS

Richard G. Levin and Takayuki Tamura

Abstract

Let S be a commutative semigroup. The main theorem in this paper is to prove that the following two conditions are equivalent: (1) For all $a, b \in S$ there are positive integers m, n such that $a^{m}=b^{n}$. (2) For all $a, b \in S, a^{l}=a^{m} b^{n}, b^{r}=$ $b^{s} a^{t}$ for some l, m, n, r, s, t. As a consequence of the theorem, the authors prove that a commutative archimedean semigroup S without idempotent is power joined if and only if the structure group of S is a torsion group.

Let S be a commutative archimedean semigroup without idempotent. Consider the following question: "Under what condition on the structure group (defined below) of S will S be power joined?" Levin proved in [4] that if S is finitely generated, equivalently if the structure group of S is finite, then S is power joined. Also he obtained a necessary and sufficient condition for S to be power joined. The following is Theorem 2 in [4]:

Theorem 1. Let S be a commutative, archimedean semigroup without idempotent. Let $G_{a}=S / \rho_{a}$ be the structure group of S determined by a. Then S is power joined if and only if G_{a} is periodic and the congruence class containing a modulo ρ_{a} is power joined.

If we assume that S is additionally cancellative, that is, S is an \mathfrak{N}-semigroup, then the answer is simple. The following is due to Chrislock [1, 2].

Theorem 2. An \mathfrak{N}-semigroup S is power joined if and only if G_{a} is periodic for some $a \in S$, equivalently for all $a \in S$.

Naturally the following question is raised: Can Theorem 1 be improved such that Theorem 2 is extended to S in Theorem 1? The question is affirmative. In this paper we study the problem for more general case, i.e., for commutative archimedean semigroups. The main theorem of this paper asserts that a commutative semigroup S is power joined if and only if it is archimedean and its group homomorphic images are periodic. As a corollary we can answer the above question.

Semigroups are assumed to be commutative throughout this paper.

