VOLTERRA TRANSFORMATIONS OF THE WIENER MEASURE ON THE SPACE OF CONTINUOUS FUNCTIONS OF TWO VARIABLES

WILLIAM N. HUDSON

The transformation of Wiener integrals over the space C_2 of continuous functions of two variables by a Volterra operator T is investigated. The operator T is defined for functions $x \in C_2$ by

$$Tx(s, t) = x(s, t) + \int_0^s \int_0^t K(u, v)x(u, v)dudv ,$$

where the kernel K(u, v) is continuous. A stochastic integral analogous to K. Ito's is defined and used to determine a Jacobian J(x) for T such that if F(x) is a Wiener measurable functional, Γ a Wiener measurable set, and m Wiener measure, $\int_{\Gamma} F(x) dm = \int_{T^{-1}(\Gamma)} F(Tx) J(x) dm.$

Let C_2 be the collection of real valued functions f defined on $D = [0, 1] \times [0, 1]$ such that f(0, t) = f(s, 0) = 0. The space C_2 is topologized by the sup-norm. In [3], Yeh defined a measure m on C_2 over the Borel σ -algebra and extended it to the Caratheodory σ -algebra relative to m. It is the purpose of this paper to investigate the transformation of the measure m when the elements of C_2 are transformed by a Volterra integral operator of the second kind. The effect of such transformations in the Wiener space of continuous functions of one variable was studied by Cameron and Martin in [1].

Let $0 = s_0 < s_1 < \cdots < s_m \leq 1$ and $0 = t_0 < t_1 < \cdots < t_n \leq 1$ and let *E* be a *nm*-dimensional Borel set. We denote by $\mathfrak{F}(s_1, \cdots, s_m, t_1, \cdots, t_n)$ the σ -algebra of sets of the form $\{x \in C_2: [x(s_1, t_1), \cdots, x(s_m, t_n)] \in E\}$ and let $\mathfrak{F}_0 = \bigcup \mathfrak{F}(s_1, \cdots, s_m, t_1, \cdots, t_n)$ where the union is over all such partitions of *D*. The measure *m* is given on $\mathfrak{F}(s_1, \cdots, s_m, t_1, \cdots, t_n)$ by

(1.1)
$$m\{x \in C_2: [x(s_1, t_1), \dots, x(s_m, t_n)] \in E\} = K(s_1, \dots, s_m, t_1, \dots, t_n) \\ \cdot \int (mn) \int W(s_1, \dots, s_m, t_1, \dots, t_n, u_{11}, \dots, u_{mn}) du_{11}, \dots, du_{mn},$$

where

$$K(s_1, \dots, s_m, t_1, \dots, t_n) = \{(2\pi)^{-mn} [s_1(s_2 - s_1) \cdots (s_m - s_{m-1})]^n [t_1(t_2 - t_1) \cdots (t_n - t_{n-1})]^m\}^{\frac{1}{2}},\$$