THE TRANSCENDENTAL RANK OF A THEORY

ALISTAIR H. LACHLAN

Morley has associated with each countable complete theory T an ordinal $\alpha_T < (2^{\aleph_0})^+$. It is shown that in fact $\alpha_T \leq \omega_1$ and that this bound is best possible.

We shall use the notation and terminology of Morley [1], where α_T is defined to be the least ordinal α such that for all $A \in N(T)$ and all $\beta > \alpha$, $S^{\alpha}(A) = S^{\beta}(A)$. As in [1] T denotes a complete theory in a countable language L, T has an infinite model, and there is a theory Σ such that $T = \Sigma^*$. If $A \in N(T)$ and $p \in S(A)$, let $r(p) = \alpha$ if p is transcendental in rank α and let r(p) be undefined otherwise. Also, if $A \in N(T)$ and $\psi \in F(A)$ define

$$r(\psi, A) = egin{cases} -1 & ext{if} & U_{\psi} = arnothing \ \sup\left\{lpha \mid p \in U_{\psi} \ \& \ r(p) = lpha
ight\} & ext{otherwise.} \end{cases}$$

LEMMA. Let $A \in N(T)$, $\psi \in F(A)$, and $r(\psi, A) = \alpha$. Then for each $\beta < \alpha$ there exists $B \in N(T)$, $A \subseteq B$, and $q \in S(B)$ such that $r(q) = \beta$ and $\psi \in q$.

Proof. Assume the hypothesis and for contradiction that no B and q exist satisfying the conclusion. Then for every $B \in N(T)$, $A \subseteq B$, we have $i_{AB}^{*-1}(U_{\psi}) \cap Tr^{\beta}(B) = \emptyset$. Thus for all such B, $i_{AB}^{*-1}(U_{\psi}) \cap (S^{\beta+1})(B) - S^{\beta}(B)) = \emptyset$. Suppose $q' \in Tr^{\beta+1}(B)$ then for every $C \in N(T)$, $B \subseteq C$, $i_{BC}^{*-1}(q') \cap S^{\beta+1}(C)$ is a set of isolated points in $S^{\beta+1}(C)$. Thus, if $\psi \in q'$, $i_{BC}^{*-1}(q') \cap S^{\beta}(C)$ is a set of isolated points in $S^{\beta}(C)$ for all such C, whence $q' \in Tr^{\beta}(B)$. We conclude that $i_{AB}^{*-1}(U_{\psi}) \cap Tr^{\beta+1}(B) = \emptyset$ for all $B \in N(T)$, $A \subseteq B$. By induction $i_{AB}^{*-1}(U_{\psi}) \cap Tr^{\gamma}(B) = \emptyset$ for all $\gamma \geq \beta$. This contradicts the hypothesis and completes the proof of the lemma.

From 2.3(b) and 2.4 of [1] it is possible to choose B in the conclusion of the lemma such that $\kappa(B-A) = \aleph_0$; we shall make use of this fact below.

Before proceeding further we need some more definitions. A language L_1 is said to be a simple extension of a language L_0 if it is obtained by adjoining \aleph_0 individual constants to L_0 . For any language L' let F(L') denote the set of formulas of L' which have no free variable other than v_0 . For each $n \in \omega$ let S_n denote the set of all sequences of 0's and 1's of length $\leq n$; the empty sequence \emptyset is allowed. For $s \in S_n$ and $i \leq 1, s*\langle i \rangle$ denotes the member of S_{n+1}