THE TRANSCENDENTAL RANK OF A THEORY

Alistair H. Lachlan

Abstract

Morley has associated with each countable complete theory T an ordinal $\alpha_{T}<\left(2^{\boldsymbol{N}_{0}}\right)^{+}$. It is shown that in fact $\alpha_{T} \leqq \omega_{1}$ and that this bound is best possible.

We shall use the notation and terminology of Morley [1], where α_{T} is defined to be the least ordinal α such that for all $A \in N(T)$ and all $\beta>\alpha, S^{\alpha}(A)=S^{\beta}(A)$. As in [1] T denotes a complete theory in a countable language L, T has an infinite model, and there is a theory Σ such that $T=\Sigma^{*}$. If $A \in N(T)$ and $p \in S(A)$, let $r(p)=\alpha$ if p is transcendental in rank α and let $r(p)$ be undefined otherwise. Also, if $A \in N(T)$ and $\psi \in F(A)$ define

$$
r(\psi, A)=\left\{\begin{array}{l}
-1 \quad \text { if } \quad U_{\psi}=\varnothing \\
\sup \left\{\alpha \mid p \in U_{\psi} \& r(p)=\alpha\right\} \quad \text { otherwise } .
\end{array}\right.
$$

Lemma. Let $A \in N(T), \psi \in F(A)$, and $r(\psi, A)=\alpha$. Then for each $\beta<\alpha$ there exists $B \in N(T), A \subseteq B$, and $q \in S(B)$ such that $r(q)=\beta$ and $\psi \in q$.

Proof. Assume the hypothesis and for contradiction that no B and q exist satisfying the conclusion. Then for every $B \in N(T), A \subseteq B$, we have $i_{A B}^{*-1}\left(U_{\psi}\right) \cap \operatorname{Tr}^{\beta}(B)=\varnothing$. Thus for all such $B, i_{A B}^{*-1}\left(U_{\psi}\right) \cap\left(S^{\beta+1}\right)(B)-$ $\left.S^{\beta}(B)\right)=\varnothing$. Suppose $q^{\prime} \in T r^{\beta+1}(B)$ then for every $C \in N(T), B \subseteq$ $C, i_{B C}^{*-1}\left(q^{\prime}\right) \cap S^{\beta+1}(C)$ is a set of isolated points in $S^{\beta+1}(C)$. Thus, if $\psi \in q^{\prime}, i_{B C}^{*-1}\left(q^{\prime}\right) \cap S^{\beta}(C)$ is a set of isolated points in $S^{\beta}(C)$ for all such C, whence $q^{\prime} \in \operatorname{Tr}^{\beta}(B)$. We conclude that $i_{A B}^{*-1}\left(U_{\psi}\right) \cap \operatorname{Tr}^{\beta+1}(B)=\varnothing$ for all $B \in N(T), A \cong B$. By induction $i_{A B}^{*-1}\left(U_{\psi}\right) \cap T r^{r}(B)=\varnothing$ for all $\gamma \geqq \beta$. This contradicts the hypothesis and completes the proof of the lemma.

From 2.3(b) and 2.4 of [1] it is possible to choose B in the conclusion of the lemma such that $\kappa(B-A)=\boldsymbol{K}_{0}$; we shall make use of this fact below.

Before proceeding further we need some more definitions. A language L_{1} is said to be a simple extension of a language L_{0} if it is obtained by adjoining \boldsymbol{X}_{0} individual constants to L_{0}. For any language L^{\prime} let $F\left(L^{\prime}\right)$ denote the set of formulas of L^{\prime} which have no free variable other than v_{0}. For each $n \in \omega$ let S_{n} denote the set of all sequences of 0 's and 1 's of length $\leqq n$; the empty sequence \varnothing is allowed. For $s \in S_{n}$ and $i \leqq 1, s *\langle i\rangle$ denotes the member of S_{n+1}

