RAMSEY BOUNDS FOR GRAPH PRODUCTS

Paul Erdös, Robert J. McEliece and Herbert Taylor

> Here we show that Ramsey numbers $M\left(k_{1}, \cdots, k_{n}\right)$ give sharp upper bounds for the independence numbers of product graphs, in terms of the independence numbers of the factors.

The Ramsey number $M\left(k_{1}, \cdots, k_{n}\right)$ is the smallest integer m with the property that no matter how the $\binom{m}{2}$ edges of the complete graph on m nodes are partitioned into n colors, there will be at least one index i for which a complete subgraph on k_{i} nodes has all of its edges in the i th color. Ramsey's Theorem tells that these numbers exist but only a few exact values are known.

The complement graph \bar{G} has the same nodes as G and the complementary set of edges.

The independence number $\alpha(G)$ of a graph G, is the largest number of nodes in any complete subgraph of \bar{G}.

The product $G_{1} \times \cdots \times G_{n}$ of graphs G_{1}, \cdots, G_{n} is the graph whose nodes are all the ordered n-tuples $\left(a_{1}, \cdots, a_{n}\right)$ in which a_{i} is a node of G_{i} for each i from 1 to n, and whose edges are as follows. A set of two nodes $\left\{\left(a_{1}, \cdots, a_{n}\right),\left(b_{1}, \cdots, b_{n}\right)\right\}$ will be an edge of $G_{1} \times \cdots \times G_{n}$ if and only if the nodes are distinct and for each i from 1 to $n, a_{i}=b_{i}$ or $\left\{a_{i}, b_{i}\right\}$ is an edge of G_{i}.

Theorem 1. For arbitrary graphs G_{1}, \cdots, G_{n}

$$
\alpha\left(G_{1} \times \cdots \times G_{n}\right)<M\left(\alpha\left(G_{1}\right)+1, \cdots, \alpha\left(G_{n}\right)+1\right)
$$

Proof. We have a complete subgraph of $\overline{G_{1} \times \cdots \times G_{n}}$ on $\alpha\left(G_{1} \times \cdots \times G_{n}\right)$ nodes. Its edges can be n colored by the following rule: give $\left\{\left(a_{1}, \cdots, a_{n}\right),\left(x_{1}, \cdots, x_{n}\right)\right\}$ color i if i is the first index for which $\left\{a_{i}, x_{i}\right\}$ is an edge of \bar{G}_{i}.

With this coloration any case where all the edges on k nodes have color i requires a complete k subgraph of \bar{G}_{i} and so requires $k<\alpha\left(G_{i}\right)+1$. With the definition of the Ramsey number this ensures that

$$
\alpha\left(G_{1} \times \cdots \times G_{n}\right)<M\left(\alpha\left(G_{1}\right)+1, \cdots, \alpha\left(G_{n}\right)+1\right)
$$

Theorem 2. If k_{1}, \cdots, k_{n} are given, there exist graphs G_{1}, \cdots, G_{n} such that for each index ifrom 1 to $n, \alpha\left(G_{i}\right)=k_{i}$ and

$$
\alpha\left(G_{1} \times \cdots \times G_{n}\right)=M\left(k_{1}+1, \cdots, k_{n}+1\right)-1
$$

