PRIME GENERATORS WITH PARABOLIC LIMITS

John Harris and Olga Higgins

The prime generating properties of the formula

$$
F=\frac{A X^{2}+A B X Y+C Y^{2}}{(A, Y)}, \quad(X, Y)=1
$$

are developed by way of three theorems. Theorem I is a prime test for F, Theorem II will factor a composite F, and Theorem III establishes parabolic limits; within these limits F is always prime.

In the 18th century Leonhard Euler and A. M. Legendre found several "prime generating" polynomials. Euler's famous formula $X^{2}+X+41$ takes prime values for every integral value of x from 0 to 39, and Legendre's formula $2 x^{2}+29$ does almost as well, taking prime values for every integral value of x from 0 to 28 . These and many other expressions that have been found since have coefficients of the form $[A, A B, C]$, with $B=0$ or 1 and C a prime.

After numerous experiments with two variables we have chosen

$$
F=\frac{A X^{2}+A B X Y+C Y^{2}}{E}, \quad E=(A, Y),(X, Y)=1
$$

as our basic "prime generating" formula. The coefficients A, B and

Figure 1

