GERŠGORIN THEOREMS, REGULARITY THEOREMS, AND BOUNDS FOR DETERMINANTS OF PARTITIONED MATRICES

 II

 II
 SOME DETERMINANTAL IDENTITIES

J. L. Brenner

A square matrix $A=\left[a_{i j}\right]_{1}^{n}$ has dominant diagonal if $\forall_{i}\left\{\left|a_{i i}\right|>R_{i}=\sum_{j \neq i}\left|a_{i j}\right|\right\}$. A more complicated type of dominance is the following. Suppose for each i, there is assigned a set $I(i)$ (subset of $\{1, \cdots, n\}$), $i \in I(i)$: Define $B_{i j}$ as the $I(i) \times I(i)$ submatrix of A that uses columns $I(i)$, and rows $\{I(i) \backslash i, j\}$, i.e., the set obtained from $I(i)$ by replacing the i th row by the j th row. Set $b_{i j}=\operatorname{det} B_{i j}$. Then $\left[b_{i j}\right]_{1}^{n}$ is a matrix, the elements of which are determinants of minor matrices of A. In an earlier paper, bounds for det A were derived in case $\left[b_{i j}\right]$ has dominant diagonal in the special case that $\{I(i)\}_{i}$ represents a partitioning of the indices into disjoint subsets.

In this article the general case is treated; $I(i)$ can be any subset of $\{1, \cdots, n\}$ that contains i. An identity is derived connecting $\operatorname{det}\left[b_{i j}\right]_{1}^{n}$ with $\operatorname{det} A$.

To establish the identity, a general multinomial identity is first derived, connecting determinants of certain submatrices of an $r \times 2 r$ matrix of indeterminates. This result, reminiscent of Sylvester's determinantal identity, is used to bound $\operatorname{det} A$.

1. Application of a characterization of the determinant function.

Lemma 1.01. Let $A=\left[a_{i j}\right]_{1}^{n}$ be a matrix of complex numbers [or indeterminates]; let a function $\phi: A \rightarrow C\left[\right.$ or $\phi: A \rightarrow C\left[a_{11}, \cdots, a_{n n}\right]$ have the following properties for all $n \times n$ matrices A.
(1.02) [1.03] If any row [column] of A is replaced by the sum of that row [column] and a multiple of another row [column], $\phi(A)$ is unaltered.
(1.04) If any row of A is multiplied (throughout) by a constant $\alpha, \phi(A)$ is multiplied α^{r}.

Then $\phi(A)$ is a constant c_{0} (independent of $a_{i j}$) multiplied by the rth power of $\operatorname{det} A$.

