GERŠGORIN THEOREMS, REGULARITY THEOREMS, AND BOUNDS FOR DETERMINANTS OF PARTITIONED MATRICES II SOME DETERMINANTAL IDENTITIES

J. L. BRENNER

A square matrix $A = [a_{ij}]_1^n$ has dominant diagonal if $\forall_i \{ | a_{ii}| > R_i = \sum_{j \neq i} | a_{ij} | \}$. A more complicated type of dominance is the following. Suppose for each *i*, there is assigned a set I(i) (subset of $\{1, \dots, n\}$), $i \in I(i)$: Define B_{ij} as the $I(i) \times I(i)$ submatrix of A that uses columns I(i), and rows $\{I(i) \setminus i, j\}$, i.e., the set obtained from I(i) by replacing the *i*th row by the *j*th row. Set $b_{ij} = \det B_{ij}$. Then $[b_{ij}]_1^n$ is a matrix, the elements of which are determinants of minor matrices of A. In an earlier paper, bounds for det A were derived in case $[b_{ij}]$ has dominant diagonal in the special case that $\{I(i)\}_i$ represents a partitioning of the indices into disjoint subsets.

In this article the general case is treated; I(i) can be any subset of $\{1, \dots, n\}$ that contains *i*. An identity is derived connecting det $[b_{ij}]_1^n$ with det A.

To establish the identity, a general multinomial identity is first derived, connecting determinants of certain submatrices of an $r \times 2r$ matrix of indeterminates. This result, reminiscent of Sylvester's determinantal identity, is used to bound det A.

1. Application of a characterization of the determinant function.

LEMMA 1.01. Let $A = [a_{ij}]_{1}^{n}$ be a matrix of complex numbers [or indeterminates]; let a function $\phi: A \to C[\text{or } \phi: A \to C[a_{11}, \dots, a_{nn}]]$ have the following properties for all $n \times n$ matrices A.

(1.02) [1.03] If any row [column] of A is replaced by the sum of that row [column] and a multiple of another row [column], $\phi(A)$ is unaltered.

(1.04) If any row of A is multiplied (throughout) by a constant α , $\phi(A)$ is multiplied α^r .

Then $\phi(A)$ is a constant c_0 (independent of a_{ij}) multiplied by the rth power of det A.