COMPLEX CHEBYSHEV ALTERATIONS

S. J. Poreda

Abstract

P. Chebyshev's famous Alternation Theorem for best uniform approximation to continuous real valued functions on an interval is generalized to include best approximation to a class of continuous complex valued functions on an ellipse.

1. Preliminary remarks and definitions. For a continuous complex valued function f defined on a compact set E in the plane and, for $n \in Z^{+}$, let $p_{n}(f, E)$ denote the polynomial of degree n, of best uniform appoximation to f on E and let;

$$
\rho_{n}(f, E)=\max _{z \in E}\left|f(z)-p_{n}(f, E)(z)\right|
$$

Chebyshev's Alternation Theorem [1, p. 29] states that if f is a continuous real valued function on an interval $[a, b]$, and p_{n} is a polynomial of degree $n, n \in Z^{+}$, then $p_{n}=p_{n}(f,[a, b])$ if and only if, there exists $n+2$ points,
$\left\{x_{i}\right\}_{i=1}^{n+2}, a \leqq x_{1}<x_{2}<\cdots<x_{n+2} \leqq b$, with the property that $\left|f(x)-p_{n}(x)\right|$ attains its maximum on $[a, b]$ at these points and $f\left(x_{i}\right)-p_{n}\left(x_{i}\right)=$ $-\left[f\left(x_{i+1}\right)-p_{n}\left(x_{i+1}\right)\right]$ for $i=1,2, \cdots, n+1$.

The sets we consider here are ellipses which are of course a generalization of intervals. So, for $a \geqq 0$, let $E_{a}=\{z+a / z:|z|=1\}$. Now let $\mathscr{F}_{n}\left(E_{n}\right)$ denote those complex valued functions f, not themselves polynomials of degree n, continuous on E_{a}, having the property that there exists $n+2$ points $\left\{\xi_{k}\right\}_{k=1}^{n+2}$ in E_{a}, such that $p_{n}\left(f, E_{n}\right)=$ $p_{n}\left(f,\left\{\xi_{k}\right\}_{k=1}^{n+2}\right)$. It is known [1, p. 22] that there always exists a set $D \subset E_{a}$, consisting of $n+k$ points, $2 \leqq k \leqq n+3$, such that $p_{n}\left(f, E_{a}\right)=p_{n}(f, D)$. Furthermore, to this author's knowledge, every example of best uniform approximation to rational functions on infinite sets in the plane (e.g., [3], [4] and [5]) is one in which such a set consisting of $n+2$ points exists or, can be shown equivalent to such an example.
2. Main theorem. Given $n+2$ points $\left\{\xi_{k}\right\}_{k=1}^{n+2}$ in E_{a} let z_{k} be such that $\xi_{k}=z_{k}+a / z_{k},\left|z_{k}\right|=1$ and if $a=1,0 \leqq \operatorname{Arg} z_{k} \leqq \pi$ for $k=$ $1,2, \cdots, n+2$. The $z_{k}^{\prime} \mathrm{s}$ are uniquely determined. Now let

$$
\Phi_{k}=z_{k}{ }^{-n / 2} \prod_{\substack{j=1 \\ j \neq k}}^{n+2}\left[\left(z_{k} z_{j}-a\right) /\left|z_{k} z_{j}-a\right|\right] \text { for }
$$

$k=1,2, \cdots, n+2$ where $0 \leqq \arg z^{1 / 2}<\pi$.

