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PEAK INTERPOLATION SETS FOR SOME ALGEBRAS
OF ANALYTIC FUNCTIONS

A. M. DAviE AND B. K. OKSENDAL

For certain algebras of analytic functions on holomor-
phically convex sets in C* metric sufficient conditions are given
for a set (not necessarily compact) to be an interpolation set.
The results extend the Rudin-Carleson theorem for the disc
algebra.

Let K be a compact subset of C* which is holomorphically convex,
i.e. K is the intersection of a decreasing sequence of pseudoconvex
domains (see [4], Ch. 2). We denote by H(K) the uniform closure
on K of the algebra of all functions analytic in a neighborhood of K,
and by A(K) the algebra of all continuous functions on K analytic
on K° (the interior of K). If E is any subset of the boundary oK
of K then we denote by H; the algebra of all bounded continuous
functions on K°U E which are analytic on K°. We show that if the
boundary of K is well behaved at each point of E, and E satisfies a
metric condition which says roughly that E has zero 2-dimensional
measure in the directions of the complex tangent and zero one dimen-
sional measure in the orthogonal direction, then E is a peak interpolation
set (in an appropriate sense) for H;, sx5. If E is compact then it is
a peak interpolation set in the usual sense ([2], p. 59) for the uniform
algebra H(K). We show also that if E has zero one-dimensional
measure then the conditions on 0K can be relaxed.

We say that 0K is strictly pseudoconvex in a neighborhood of a
point € 0K if there is an open neighborhood V of { such that V' N
0K is a C*submanifold of V and the Levi form is positive definite at
{. Then we can find an open neighborhood V of { and a C* strictly
plurisubharmonic function p in V such that KNV = {ze V: p(z) < 0}
and grad o = 0 on VNoK. (See [3] Prop. IX. A4).

LEMMA 1. Let K be a holomorphically convex compact set im C"
and let { be a point of 0K in a neighborhood of which 0K is strictly
pseudoconver. We can find positive numbers m; and M; and G; € H(K),
such that

(8 ReGi(e) = m|l — 2|} ze K

(b) Re Gg(Z) < Mglc — ZIZ, z€ 0K

(¢) grad (Re Gy)(§) = — grad p() .

Proof. Put
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