PEAK INTERPOLATION SETS FOR SOME ALGEBRAS OF ANALYTIC FUNCTIONS

A. M. Davie and B. K. Øksendal

Abstract

For certain algebras of analytic functions on holomorphically convex sets in C^{n} metric sufficient conditions are given for a set (not necessarily compact) to be an interpolation set. The results extend the Rudin-Carleson theorem for the disc algebra.

Let K be a compact subset of C^{n} which is holomorphically convex, i.e. K is the intersection of a decreasing sequence of pseudoconvex domains (see [4], Ch. 2). We denote by $H(K)$ the uniform closure on K of the algebra of all functions analytic in a neighborhood of K, and by $A(K)$ the algebra of all continuous functions on K analytic on K^{0} (the interior of K). If E is any subset of the boundary ∂K of K then we denote by H_{E}^{∞} the algebra of all bounded continuous functions on $K^{0} \cup E$ which are analytic on K^{0}. We show that if the boundary of K is well behaved at each point of E, and E satisfies a metric condition which says roughly that E has zero 2 -dimensional measure in the directions of the complex tangent and zero one dimensional measure in the orthogonal direction, then E is a peak interpolation set (in an appropriate sense) for $H_{E \backslash(\partial K \backslash \bar{E})}^{\infty}$. If E is compact then it is a peak interpolation set in the usual sense ([2], p. 59) for the uniform algebra $H(K)$. We show also that if E has zero one-dimensional measure then the conditions on ∂K can be relaxed.

We say that ∂K is strictly pseudoconvex in a neighborhood of a point $\zeta \in \partial K$ if there is an open neighborhood V of ζ such that $V \cap$ ∂K is a C^{2}-submanifold of V and the Levi form is positive definite at ζ. Then we can find an open neighborhood V of ζ and a C^{2} strictly plurisubharmonic function ρ in V such that $K \cap V=\{z \in V: \rho(z) \leqq 0\}$ and $\operatorname{grad} \rho \neq 0$ on $V \cap \partial K$. (See [3] Prop. IX. A4).

Lemma 1. Let K be a holomorphically convex compact set in C^{n} and let ζ be a point of ∂K in a neighborhood of which ∂K is strictly pseudoconvex. We can find positive numbers m_{ζ} and M_{ζ} and $G_{\zeta} \in H(K)$, such that
(a) $\operatorname{Re} G_{\zeta}(z) \geqq m_{\zeta}|\zeta-z|^{2}, z \in K$
(b) $\operatorname{Re} G_{\zeta}(z) \leqq M_{\zeta}|\zeta-z|^{2}, z \in \partial K$
(c) $\operatorname{grad}\left(\operatorname{Re} G_{\zeta}\right)(\zeta)=-\operatorname{grad} \rho(\zeta)$.

Proof. Put

