# THE TRANSLATIONAL HULL OF AN $N$-SEMIGROUP 

Robert E. Hall


#### Abstract

An $N$-semigroup is a commutative, cancellative, archimedean semigroup having no idempotents. In the first section of this paper the Tamura representation of an $N$-semigroup is used to determine the translational hull. The maximal semilattice decomposition of the translational hull is then investigated resulting in a complete determination of the classes of this decomposition in the case that the N -semigroup is power joined. These results are used in the second section which deals with ideal extensions of an $N$ semigroup by an abelian group, and ideal extensions of an abelian group by an $N$-semigroup. These extensions arise naturally in the maximal semilattice decomposition of a commutative separative semigroup. The latter part of this section contains results on cancellative extensions of $N$-semigroups, and a structure theorem of the class of weakly power joined, commutative, cancellative semigroups.


Notation and Preliminaries. Let $S$ be a semigroup. We will write left [right] translations as operators on the left [right]; $\Lambda(S)$ $[P(S)]$ denotes the semigroup of all left [right] translations of $S$ under the multiplication $\left(\lambda \lambda^{\prime}\right) x=\lambda\left(\lambda^{\prime} x\right)\left[x\left(p p^{\prime}\right)=(x p) p^{\prime}\right]$ for all $x \in S$. The translations $\lambda \in \Lambda(S)$ and $p \in P(S)$ are linked if $x(\lambda y)=(x p) y$ for all $x, y \in S ; \Omega(S)$ denotes the translational hull of $S$, that is, the subsemigroup of $\Lambda(S) \times P(S)$ consisting of all pairs of linked translations. The subsemigroup of $\Omega(S)$ consisting of all pairs of the form $\left(\lambda_{a}, p_{a}\right)$ is denoted by $\Pi(S)$. (Recall that $\lambda_{a} x=a x$ and $x p_{a}=$ $x a$ for all $x \in S$ ).

We will need the following results concerning $\Omega(S)$ when $S$ is a commutative cancellative semigroup. Proofs may be found in [6].
(1) $\Omega(S)$ is commutative and cancellative.
(2) $(\lambda, p) \in \Omega(S)$ if and only if $\lambda x=x p$ for all $x \in S$, and hence $\Omega(S) \cong \Lambda(S)$.
(3) $S \cong \Gamma(S)$ where $\Gamma(S)=\left\{\lambda_{a} \in \Lambda(S) \mid a \in S\right\}$.

We next describe the Tamura representation of an $N$-semigroup. Let $N$ denote the positive integers and $N_{0}$ the nonnegative integers. Let $G$ be an abelian group and $I: G \times G \rightarrow N_{0}$ be a function satisfying:
(i) $I(a, b)=I(b, a)$
( $a, b \in G$ ),
(ii) $I(a, b)+I(a b, c)=I(a, b c)+(b, c) \quad(a, b, c \in G)$,
(iii) For each $a \in G$ there is an $m \in N$ such that $I\left(a^{m}, a\right)>0$.
(iv) $I(e, e)=1$ where $e$ is the identity of $G$.

