THE INFLATION—RESTRICTION THEOREM FOR AMITSUR COHOMOLOGY

ROBERT A. MORRIS

In this paper we develop a generalization of the classical exactness of the inflation—restriction sequence in group cohomology. Our main theorems relate the Amitsur cohomology of algebras to that of subalgebras.

1. Introduction. Throughout, R is a commutative ring, unadorned \otimes means tensor product over R, all algebras are commutative, and if S is an R-algebra, S^{j} denotes the tensor product $S \otimes \cdots \otimes S$, j times. R-Alg and Ab denote the categories of commutative Ralgebras and abelian groups, respectively.

For any *R*-algebra *S* there are *R*-algebra maps $\varepsilon_i^n: S^n \to S^{n+1}$ given by $\varepsilon_i^n(s_0 \otimes \cdots \otimes s_{n-1}) = s_0 \otimes \cdots \otimes s_{i-1} \otimes 1 \otimes s_i \otimes \cdots \otimes s_{n-1}$, $i = 0, 1, \dots, n+1$. These are called the (*n*-dimensional) co-face maps for *S/R*. Generally the superscript will be suppressed. The co-face maps are easily seen to satisfy the co-face relations:

$$arepsilon_i arepsilon_j = arepsilon_{j+1} arepsilon_i ext{ for } i \leq j$$
 .

If $F: R-\operatorname{Alg} \to Ab$ is any functor, the Amitsur cochain complex, C(S/R, F), is defined by $C^{n}(S/R, F) = F(S^{n+1})$, $n = 0, 1, 2, \cdots [1, 2, 6]$. The coboundary operator $d^{n}: F(S^{n+1}) \to F(S^{n+2})$ is given by $d^{n} = \sum_{i=0}^{n+1} (-1)^{i} F(\varepsilon_{i})$. It is a consequence of the co-face relations that a complex results, i.e., that $d^{n+1}d^{n} = 0$. The homology $\operatorname{Ker} d^{n}/\operatorname{Im} d^{n-1}$ of this complex is the Amitsur cohomology of S/R with coefficients in F, denoted $H^{n}(S/R, F)$. As usual, $H^{0}(S/R, F) = \operatorname{Ker} d^{0}$.

Let $F_1: R$ -Alg $\to Ab$ be another functor and let $\eta: F \to F_1$ be a natural transformation. Then $C(1, \eta) = \eta_{S^{n+1}}: F(S^{n+1}) \to F_1(S^{n+1})$ is a map of complexes and so induces a map $H^n(1, \eta): H^n(S/R, F) \to H^n(S/R, F_1)$.

We say a sequence $0 \to F^{\omega}F_1\chi F_2 \to 0$ is exact if $0 \to F(A) \xrightarrow{\omega_A} F_1(A) \xrightarrow{\chi_A} F_2(A) \to 0$ is an exact sequence of abelian groups for each *R*-algebra *A*. Indeed the usual long sequence results from a short exact sequence of coefficients.

THEOREM 1.1. [6, p. 47]. Let $0 \to F \xrightarrow{\omega} F_1 \xrightarrow{\chi} F_2 \to 0$ be an exact sequence of functors. Then there are maps $\delta^n(S)$ making

$$\cdots \longrightarrow H^{n-1}(S/R, F_2) \xrightarrow{\partial^{n-1}(S)} H^n(S/R, F) \xrightarrow{H^{n(1,\omega)}} H^n(S/R, F_1) \xrightarrow{H^{n(1,\omega)}} H^n(S/R, F_1) \xrightarrow{\partial^{n(S)}} H^{n+1}(S/R, F) \longrightarrow \cdots$$