COMMUTANTS OF SOME HAUSDORFF MATRICES

B. E. Rhoades

Abstract

Let $B(c)$ denote the Banach algebra of bounded operators over c, the space of convergent sequences. Let Γ and Δ denote the subalgebras of $B(c)$ consisting, respectively, of conservative and conservative triangular infinite matrices, and C the Cesaro matrix of order one. In this paper we investigate $\operatorname{Com}(C)$ in Γ and $B(c), \operatorname{Com}(H)$ in Γ and $B(c)$ for certain Hausdorff matrices H, and some related questions.

Let $B(c)$ denote the Banach algebra of bounded operators over c, the space of convergent sequences. Let Γ and Δ denote the subalgebras of $B(c)$ consisting, respectively, of conservative and conservative triangular infinite matrices. It is well known (see, e.g. [3, p. 77]) that the commutant of C, the Cesaro matrix of order one, in Δ is the family \mathscr{C} of conservative Hausdorff matrices. The same proof yields the result that if H is any conservative Hausdorff triangle with distinct diagonal elements, then $\operatorname{Com}(H)=\mathscr{H}$ in Δ. In this paper we investigate $\operatorname{Com}(C)$ in Γ and $B(c), \operatorname{Com}(H)$ in Γ and $B(c)$ for certain Hausdorff matrices H, and some related questions.

The spaces of bounded, convergent, and absolutely convergent sequences shall be denoted by m, c, and l. U will denote the unilateral shift, and we shall use $A \leftrightarrow B$ to indicate that the operators A and B commute. An infinite matrix A is said to be triangular if it has only zero entries above the main diagonal, and a triangle if it is triangular and has no zeros on the main diagonal. An infinite matrix A is conservative; i.e., $A: c \rightarrow c$ if and only if

$$
\|A\|=\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty, \quad a_{k}=\lim _{n} a_{n k}
$$

exists for each k, and $\lim _{n} \sum_{k} a_{n k}$ exists.
The proof $[2, \mathrm{p} .249]$ that $\operatorname{Com}(C)=\mathscr{H}$ in Δ, uses the associativity of matrix multiplication. If $\operatorname{Com}(C)$ is to remain unchanged in the larger algebra Γ, it is necessary that $\operatorname{Com}(C)$ contain only triangular matrices. We are thus led to the following result, where e_{k} denotes the coordinate sequence with $a 1$ in the k th position and zeros elsewhere.

Theorem 1. Let A be a conservative triangle, B an infinite matrix with finite norm, $B \leftrightarrow A$. Then B is triangular if and only if

