A PROBABILISTIC METHOD FOR THE RATE OF CONVERGENCE TO THE DIRICHLET PROBLEM

David F. Fraser

Abstract

The expectation $E^{p}(\Phi)$ approximates the solution $u(z)=$ $E^{W(\Phi)}$ of the Dirichlet problem for a plane domain D with boundary conditions ϕ on the boundary γ of D, where W is Wiener measure, P is the measure generated by a random walk which approximates Brownian motion beginning at z, and Φ is the functional on paths which equals the value of ϕ at the point where the path first meets γ. This paper develops a specific rate of convergence. If γ is C^{2}, and P^{n} is generated by random walks beginning at z, with independent increments in the coordinate directions at intervals $1 / n$, with mean zero, variance $1 / \sqrt{n}$, and absolute third moment bounded by M, then $\mid E^{p n}(\Phi)-$ $E^{W}(\Phi) \mid \leqq(C M V / \rho(z, \gamma)) n^{-1 / 16}(\log n)^{9 / 8}$, where V is the total variation of ϕ on $\gamma, \rho(z, \gamma)$ is the distance from z to γ, and C is a constant depending only on γ.

Assume D is a Jordan region. If $z_{t}=x_{t}+i y_{t}$ is Brownian motion in R^{2} beginning at z_{0}, (cf. e.g., [5, p. 262]), and $\tau=$ $\inf \left\{t: z_{t} \in \gamma\right\}$ is the first time z hits the boundary γ of D, then Φ is the functional given by $\Phi(z)=.\phi\left(z_{\tau}\right)$. Let $E^{W}(\Phi(z))=.\int \Phi(z) d$.$W be$ the expectation of Φ with respect to Wiener measure W on $C([0, \infty)$, C'). (See [8, pp. 218-19] for a definition of Brownian motion on the interval $[0,1]$ and the corresponding Wiener measure.)

Let $g_{1}^{1}, g_{1}^{2}, g_{2}^{1}, g_{2}^{2}, \cdots, g_{k}^{1}, g_{k}^{2}, \cdots$ be a sequence of indendent random variables with mean zero, variance 1 , and absolute third moment bounded uniformly by $M<\infty$, and let

$$
\xi_{i}^{\alpha}=g_{i}^{\alpha} / \sqrt{n}, \zeta_{0}=z_{0}, \zeta_{k}=z_{0}+\sum_{i=1}^{k}\left(\xi_{i}^{1}+\sqrt{-1 \xi_{i}^{2}}\right), t_{k}=k / n
$$

Let $\xi(t)$ be the continuous random broken line which has vertices $\left(t_{k}, \zeta_{k}\right)$ and is linear between vertices. Let P^{n} be the measure on $C([0, \infty), \mathbb{C})$ generated by this line, i.e., $P^{n}(S)=P(\xi(t) \in S)$.

Now by the Central Limit Theorem $P^{n}\left(\xi^{\alpha}(t) \leqq \lambda\right) \rightarrow W\left(z_{t}^{\alpha} \leqq \lambda\right)$, $\alpha=1,2$, where $\xi^{\alpha}(t), z_{t}^{\alpha}$ are the real and imaginary parts of $\xi(t), z_{t}$ respectively, (cf. e.g., [1, pp. 186-7]). More exactly one has the Barry-Esseen Theorem [3, p. 521]: For nt an integer

$$
\begin{equation*}
\sup _{\lambda}\left|P\left(\xi^{\alpha}(t) \leqq \lambda\right)-N(\lambda / \sqrt{t})\right| \leqq \frac{33}{4} M / \sqrt{n t} \tag{1.1}
\end{equation*}
$$

where $N(x)$ is the normal distribution. A useful generalization of the

