A PROBABILISTIC METHOD FOR THE RATE OF CON-VERGENCE TO THE DIRICHLET PROBLEM

DAVID F. FRASER

The expectation $E^p(\Phi)$ approximates the solution $u(z) = E^w(\Phi)$ of the Dirichlet problem for a plane domain D with boundary conditions ϕ on the boundary γ of D, where W is Wiener measure, P is the measure generated by a random walk which approximates Brownian motion beginning at z, and Φ is the functional on paths which equals the value of ϕ at the point where the path first meets γ . This paper develops a specific rate of convergence. If γ is C^2 , and P^n is generated by random walks beginning at z, with independent increments in the coordinate directions at intervals 1/n, with mean zero, variance $1/\sqrt{n}$, and absolute third moment bounded by M, then $|E^{pn}(\Phi) - E^w(\Phi)| \leq (CMV/\rho(z, \gamma)) n^{-1/16}(\log n)^{9/8}$, where V is the total variation of ϕ on γ , $\rho(z, \gamma)$ is the distance from z to γ , and C is a constant depending only on γ .

Assume *D* is a Jordan region. If $z_t = x_t + iy_t$ is Brownian motion in \mathbb{R}^2 beginning at z_0 , (cf. e.g., [5, p. 262]), and $\tau =$ inf $\{t: z_t \in \gamma\}$ is the first time *z* hits the boundary γ of *D*, then Φ is the functional given by $\Phi(z_{\cdot}) = \phi(z_{\tau})$. Let $E^{W}(\Phi(z_{\cdot})) = \int \Phi(z_{\cdot}) dW$ be the expectation of Φ with respect to Wiener measure *W* on $C([0, \infty),$ $\mathscr{C})$. (See [8, pp. 218-19] for a definition of Brownian motion on the interval [0, 1] and the corresponding Wiener measure.)

Let $g_1^1, g_2^2, g_2^1, g_2^2, \dots, g_k^1, g_k^2, \dots$ be a sequence of indendent random variables with mean zero, variance 1, and absolute third moment bounded uniformly by $M < \infty$, and let

$$\xi_i^{lpha} = g_i^{lpha} / \sqrt{n}, \, \zeta_0 = z_0, \, \zeta_k = z_0 + \sum_{i=1}^k \left(\hat{\xi}_i^1 + \sqrt{-1} \hat{\xi}_i^2
ight), \, t_k = k/n$$
 .

Let $\xi(t)$ be the continuous random broken line which has vertices (t_k, ζ_k) and is linear between vertices. Let P^n be the measure on $C([0, \infty), \mathcal{C})$ generated by this line, i.e., $P^n(S) = P(\xi(t) \in S)$.

Now by the Central Limit Theorem $P^n(\xi^{\alpha}(t) \leq \lambda) \to W(z_t^{\alpha} \leq \lambda)$, $\alpha = 1, 2$, where $\xi^{\alpha}(t), z_t^{\alpha}$ are the real and imaginary parts of $\xi(t), z_t$ respectively, (cf. e.g., [1, pp. 186-7]). More exactly one has the Barry-Esseen Theorem [3, p. 521]: For nt an integer

(1.1)
$$\sup_{\lambda} |P(\xi^{\alpha}(t) \leq \lambda) - N(\lambda/\sqrt{t})| \leq \frac{33}{4}M/\sqrt{nt}$$

where N(x) is the normal distribution. A useful generalization of the