GENERALIZED CONTINUATION

ALAN S. COVER

In this paper the operation of analytic continuation is generalized by relaxing the condition that a direct continuation of a function must have the same values as the original on the intersection of their domains of definition. Thus the generalized continuations of a function can have some other property in common with the original function such as being preimages of a single function under a local integral operator. This generalization is accomplished by developing \mathscr{A} continuation of $\mathscr{F} = \{(f_{\alpha}, S_{\alpha}) | f_{\alpha} \in \emptyset \text{ and } S_{\alpha} \text{ a ball in } \mathscr{C}^n\}$ with respect to a collection of maps, \mathcal{A} , of subsets of \mathcal{F} into F. A must satisfy some compatibility conditions. Many of the proofs in this development parallel those for analytic continuation and lead to the introduction of a manifold on which the generalized continuation is single valued. A generalized continuation of function elements (f_{α}, S_{α}) is achieved when all the f_{α} 's are complex valued functions defined on S_{α} and some examples are given.

In §1 \mathscr{A} -continuation is developed for \mathscr{F} . A manifold $M(\mathscr{F}, \mathscr{A})$ is developed on which \mathscr{A} -continuation is single valued and the complete \mathscr{A} -function is introduced which is similar to the complete analytic function of Weierstrass. Theorem 11 states a necessary and sufficient local condition that $M(\mathscr{F}, \mathscr{A})$ and $M(\mathscr{H}, \mathscr{B})$ be holomorphic. In section 2 \mathscr{A} -continuation is specialized to sets, \mathscr{F} , where f_{α} is a function with S_{α} as its domain of definition. Then (f_{α}, S_{α}) is referred to as a function element. For function elements a compatible set of maps can be considered as a generalization of direct analytic continuation of power series. An indicator function is defined to help describe a complete \mathscr{A} -function. Direct analytic continuation and continuation of the coefficients of a linear Weierstrass polynomial are given as examples.

Given in §3 is the more intricate example of continuing the normalized B_3 -associate of the Bergman-Whittaker Integral Operator. Using Theorem 11 this generalized continuation is shown to be equivalent to analytically continuating the harmonic function represented by the B_3 -associate. This is the example which motivated the study of generalized continuation.

1. Generalized continuation. Let Φ be a set and with each f_{α} in Φ associate ball, S_{α} , in C^{n} and let $\mathscr{F} = \{(f_{\alpha}, S_{\alpha}) | f_{\alpha} \in \Phi\}$. Let x_{α} denote the center of S_{α} and consider a set of operators or maps $\mathscr{H} =$