NORMPRESERVING EXTENSIONS IN SUBSPACES OF C(X)

EGGERT BRIEM AND MURALI RAO

If B is a subspace of C(X) and F is a closed subset of X, this note gives sufficient conditions in order that every function in the restriction subspace $B|_F$ has an extension in B with no increase in norm.

Introduction. Let X be a compact Hausdorff space, C(X) the Banach algebra of all continuous complex-valued functions on X and let B be a closed linear subspace of C(X) separating the points of X and containing the constants. A closed subset F of X is said to have the normpreserving extension property w.r.t. B if any function b_0 in the restriction subspace $B|_F$ has an extension $b \in B$ (i.e. $b|_F = b_0$) such that $||b|| = ||b_0||_F(|| \cdot || (resp. || \cdot ||_F))$ denotes the supremum norm on X (resp. F)). The main result is the following:

Let F be a closed subset of X and suppose there is a map T (not necessarily linear) from M(X) into M(X) satisfying the following conditions

(i) $m - Tm \in B^{\perp}$ for all $m \in M(X)$

(ii) $T\lambda$ is a probability measure when λ is

(iii) If $s_i \in C$ and $m_i \in M(X)$ $i = 1, \dots, n$ and $\sum_{i=1}^n s_i m_i \in k(F)^{\perp}$ then $\sum_{i=1}^n s_i(Tm_i)|_{X \setminus F} \in B^{\perp}$.

Then F has the normpreserving extension property.

M(X) denotes the set of regular Borel measures on X, and if A is a subset of B then A^{\perp} is the set of those measures in M(X) which annihilate A. k(F) consists of those functions in B which are identically 0 on F. Also if G is a Borel subset of X and $m \in M(X)$ then $m|_{G}$ is the measure $\chi_{G}m$ where χ_{G} is the characteristic function for G.

Two conditions, either of which is known to imply that a closed subset F of X has the normpreserving extension property are the following:

Condition 1. For all $\sigma \in B^{\perp}$, $\sigma|_F \in B^{\perp}$.

Condition 2. F is a compact subset of the Choquet boundary Σ_B for B and for all $\sigma \in M(\Sigma_B) \cap B^{\perp}, \sigma|_F \in B^{\perp}$.

 $(M(\Sigma_B)$ denotes the set of those $\sigma \in M(X)$ for which the total variation $|\sigma|$ is maximal in Choquet's ordering for positive measures (see [1]