THE REDUCING IDEAL IS A RADICAL

T. W. PALMER

For any *-algebra \mathfrak{A} the reducing ideal \mathfrak{A}_R of \mathfrak{A} is the intersection of the kernels of all the *-representations of \mathfrak{A} . Although the reducing ideal has been called the *-radical, and obviously satisfies $(\mathfrak{A}/\mathfrak{A}_R)_R = \{0\}$, it has not previously been shown to satisfy another of the fundamental properties of an abstract radical except in the case of hermitian Banach *-algebras where it equals the Jacobson radical. In this paper we prove two extension theorems for *-representations. The more important one states that any essential *-representation of a *-ideal of a U*-algebra (a fortiori, of a Banach *-algebra) has a unique extension to a *-representation of the whole algebra. These theorems show in particular that $(\mathfrak{A}_R)_R = \mathfrak{A}_R$ if \mathfrak{A} is either a commutative *-algebra or a U*algebra. The somewhat stronger statements which are actually proved, together with previously known properties of the reducing ideal, show that the reducing ideal defines a radical subcategory of each of the following three semi-abelian categories:

- (1) Commutative *-algebras and *homomorphisms.
- (2) Banach *-algebras and continuous *-homomorphisms.
- (3) Banach *-algebras and contractive *-homomorphisms.

The concept of the reducing ideal was introduced by Gelfand and Naimark in their classic paper [2, p. 463]. It has subsequently been studied by Kelley and Vaught [5, p. 51] and the present author [7, p. 63] and [8, p. 930]. The concept is discussed in [10, pp. 210, 226] and [6, p. 259]. In [11, 1479] Yood gave a definition of the *-radical which agrees with our definition for Banach *-algebras but differs for certain other types of *-algebras.

Our main extension theorem (3.1, below) was previously known for B^* -algebras [1, Proposition 2.10.4]. It has a number of applications besides the one discussed here. For example it immediately implies the conclusion of [4, Theorem 23] with hypotheses weaker than those of [4, Theorem 22].

In §1 we give necessary background information. The case of commutative *-algebras is considered in §2 and of U^* -algebras in §3. The category theory results are described in §4 where we use the terminology of M. Gray [3] for the general theory of radicals.

In general we follow the terminology of Rickart's book [10]. Further details and related results will be found in the author's forthcoming monograph [9].